Metamath Proof Explorer


Theorem 19prm

Description: 19 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 19prm 1 9 ∈ ℙ

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 9nn 9 ∈ ℕ
3 1 2 decnncl 1 9 ∈ ℕ
4 1nn 1 ∈ ℕ
5 9nn0 9 ∈ ℕ0
6 1lt10 1 < 1 0
7 4 5 1 6 declti 1 < 1 9
8 4nn0 4 ∈ ℕ0
9 4t2e8 ( 4 · 2 ) = 8
10 df-9 9 = ( 8 + 1 )
11 1 8 9 10 dec2dvds ¬ 2 ∥ 1 9
12 3nn 3 ∈ ℕ
13 6nn0 6 ∈ ℕ0
14 8nn0 8 ∈ ℕ0
15 8p1e9 ( 8 + 1 ) = 9
16 6cn 6 ∈ ℂ
17 3cn 3 ∈ ℂ
18 6t3e18 ( 6 · 3 ) = 1 8
19 16 17 18 mulcomli ( 3 · 6 ) = 1 8
20 1 14 15 19 decsuc ( ( 3 · 6 ) + 1 ) = 1 9
21 1lt3 1 < 3
22 12 13 4 20 21 ndvdsi ¬ 3 ∥ 1 9
23 2nn0 2 ∈ ℕ0
24 5nn0 5 ∈ ℕ0
25 9lt10 9 < 1 0
26 1lt2 1 < 2
27 1 23 5 24 25 26 decltc 1 9 < 2 5
28 3 7 11 22 27 prmlem1 1 9 ∈ ℙ