Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
2 |
|
1arith.2 |
⊢ 𝑅 = { 𝑒 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑒 “ ℕ ) ∈ Fin } |
3 |
|
prmex |
⊢ ℙ ∈ V |
4 |
3
|
mptex |
⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ V |
5 |
4 1
|
fnmpti |
⊢ 𝑀 Fn ℕ |
6 |
1
|
1arithlem3 |
⊢ ( 𝑥 ∈ ℕ → ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0 ) |
7 |
|
nn0ex |
⊢ ℕ0 ∈ V |
8 |
7 3
|
elmap |
⊢ ( ( 𝑀 ‘ 𝑥 ) ∈ ( ℕ0 ↑m ℙ ) ↔ ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0 ) |
9 |
6 8
|
sylibr |
⊢ ( 𝑥 ∈ ℕ → ( 𝑀 ‘ 𝑥 ) ∈ ( ℕ0 ↑m ℙ ) ) |
10 |
|
fzfi |
⊢ ( 1 ... 𝑥 ) ∈ Fin |
11 |
|
ffn |
⊢ ( ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0 → ( 𝑀 ‘ 𝑥 ) Fn ℙ ) |
12 |
|
elpreima |
⊢ ( ( 𝑀 ‘ 𝑥 ) Fn ℙ → ( 𝑞 ∈ ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ↔ ( 𝑞 ∈ ℙ ∧ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) ∈ ℕ ) ) ) |
13 |
6 11 12
|
3syl |
⊢ ( 𝑥 ∈ ℕ → ( 𝑞 ∈ ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ↔ ( 𝑞 ∈ ℙ ∧ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) ∈ ℕ ) ) ) |
14 |
1
|
1arithlem2 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( 𝑞 pCnt 𝑥 ) ) |
15 |
14
|
eleq1d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) ∈ ℕ ↔ ( 𝑞 pCnt 𝑥 ) ∈ ℕ ) ) |
16 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
17 |
|
id |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ ) |
18 |
|
dvdsle |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑥 ∈ ℕ ) → ( 𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥 ) ) |
19 |
16 17 18
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ 𝑥 → 𝑞 ≤ 𝑥 ) ) |
20 |
|
pcelnn |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ℕ ) → ( ( 𝑞 pCnt 𝑥 ) ∈ ℕ ↔ 𝑞 ∥ 𝑥 ) ) |
21 |
20
|
ancoms |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑞 pCnt 𝑥 ) ∈ ℕ ↔ 𝑞 ∥ 𝑥 ) ) |
22 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
24 |
22 23
|
eleqtrdi |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
26 |
|
elfz5 |
⊢ ( ( 𝑞 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑞 ∈ ( 1 ... 𝑥 ) ↔ 𝑞 ≤ 𝑥 ) ) |
27 |
24 25 26
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∈ ( 1 ... 𝑥 ) ↔ 𝑞 ≤ 𝑥 ) ) |
28 |
19 21 27
|
3imtr4d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑞 pCnt 𝑥 ) ∈ ℕ → 𝑞 ∈ ( 1 ... 𝑥 ) ) ) |
29 |
15 28
|
sylbid |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) ∈ ℕ → 𝑞 ∈ ( 1 ... 𝑥 ) ) ) |
30 |
29
|
expimpd |
⊢ ( 𝑥 ∈ ℕ → ( ( 𝑞 ∈ ℙ ∧ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) ∈ ℕ ) → 𝑞 ∈ ( 1 ... 𝑥 ) ) ) |
31 |
13 30
|
sylbid |
⊢ ( 𝑥 ∈ ℕ → ( 𝑞 ∈ ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) → 𝑞 ∈ ( 1 ... 𝑥 ) ) ) |
32 |
31
|
ssrdv |
⊢ ( 𝑥 ∈ ℕ → ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ⊆ ( 1 ... 𝑥 ) ) |
33 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑥 ) ∈ Fin ∧ ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ⊆ ( 1 ... 𝑥 ) ) → ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ∈ Fin ) |
34 |
10 32 33
|
sylancr |
⊢ ( 𝑥 ∈ ℕ → ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ∈ Fin ) |
35 |
|
cnveq |
⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ◡ 𝑒 = ◡ ( 𝑀 ‘ 𝑥 ) ) |
36 |
35
|
imaeq1d |
⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ( ◡ 𝑒 “ ℕ ) = ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ( ( ◡ 𝑒 “ ℕ ) ∈ Fin ↔ ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ∈ Fin ) ) |
38 |
37 2
|
elrab2 |
⊢ ( ( 𝑀 ‘ 𝑥 ) ∈ 𝑅 ↔ ( ( 𝑀 ‘ 𝑥 ) ∈ ( ℕ0 ↑m ℙ ) ∧ ( ◡ ( 𝑀 ‘ 𝑥 ) “ ℕ ) ∈ Fin ) ) |
39 |
9 34 38
|
sylanbrc |
⊢ ( 𝑥 ∈ ℕ → ( 𝑀 ‘ 𝑥 ) ∈ 𝑅 ) |
40 |
39
|
rgen |
⊢ ∀ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ∈ 𝑅 |
41 |
|
ffnfv |
⊢ ( 𝑀 : ℕ ⟶ 𝑅 ↔ ( 𝑀 Fn ℕ ∧ ∀ 𝑥 ∈ ℕ ( 𝑀 ‘ 𝑥 ) ∈ 𝑅 ) ) |
42 |
5 40 41
|
mpbir2an |
⊢ 𝑀 : ℕ ⟶ 𝑅 |
43 |
14
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( 𝑞 pCnt 𝑥 ) ) |
44 |
1
|
1arithlem2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) = ( 𝑞 pCnt 𝑦 ) ) |
45 |
44
|
adantll |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) = ( 𝑞 pCnt 𝑦 ) ) |
46 |
43 45
|
eqeq12d |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ∧ 𝑞 ∈ ℙ ) → ( ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ↔ ( 𝑞 pCnt 𝑥 ) = ( 𝑞 pCnt 𝑦 ) ) ) |
47 |
46
|
ralbidva |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ∀ 𝑞 ∈ ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑥 ) = ( 𝑞 pCnt 𝑦 ) ) ) |
48 |
1
|
1arithlem3 |
⊢ ( 𝑦 ∈ ℕ → ( 𝑀 ‘ 𝑦 ) : ℙ ⟶ ℕ0 ) |
49 |
|
ffn |
⊢ ( ( 𝑀 ‘ 𝑦 ) : ℙ ⟶ ℕ0 → ( 𝑀 ‘ 𝑦 ) Fn ℙ ) |
50 |
|
eqfnfv |
⊢ ( ( ( 𝑀 ‘ 𝑥 ) Fn ℙ ∧ ( 𝑀 ‘ 𝑦 ) Fn ℙ ) → ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) ↔ ∀ 𝑞 ∈ ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ) ) |
51 |
11 49 50
|
syl2an |
⊢ ( ( ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0 ∧ ( 𝑀 ‘ 𝑦 ) : ℙ ⟶ ℕ0 ) → ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) ↔ ∀ 𝑞 ∈ ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ) ) |
52 |
6 48 51
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) ↔ ∀ 𝑞 ∈ ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 ) = ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ) ) |
53 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
54 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
55 |
|
pc11 |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑥 ) = ( 𝑞 pCnt 𝑦 ) ) ) |
56 |
53 54 55
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = 𝑦 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt 𝑥 ) = ( 𝑞 pCnt 𝑦 ) ) ) |
57 |
47 52 56
|
3bitr4d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
58 |
57
|
biimpd |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
59 |
58
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
60 |
|
dff13 |
⊢ ( 𝑀 : ℕ –1-1→ 𝑅 ↔ ( 𝑀 : ℕ ⟶ 𝑅 ∧ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
61 |
42 59 60
|
mpbir2an |
⊢ 𝑀 : ℕ –1-1→ 𝑅 |
62 |
|
eqid |
⊢ ( 𝑔 ∈ ℕ ↦ if ( 𝑔 ∈ ℙ , ( 𝑔 ↑ ( 𝑓 ‘ 𝑔 ) ) , 1 ) ) = ( 𝑔 ∈ ℕ ↦ if ( 𝑔 ∈ ℙ , ( 𝑔 ↑ ( 𝑓 ‘ 𝑔 ) ) , 1 ) ) |
63 |
|
cnveq |
⊢ ( 𝑒 = 𝑓 → ◡ 𝑒 = ◡ 𝑓 ) |
64 |
63
|
imaeq1d |
⊢ ( 𝑒 = 𝑓 → ( ◡ 𝑒 “ ℕ ) = ( ◡ 𝑓 “ ℕ ) ) |
65 |
64
|
eleq1d |
⊢ ( 𝑒 = 𝑓 → ( ( ◡ 𝑒 “ ℕ ) ∈ Fin ↔ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
66 |
65 2
|
elrab2 |
⊢ ( 𝑓 ∈ 𝑅 ↔ ( 𝑓 ∈ ( ℕ0 ↑m ℙ ) ∧ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
67 |
66
|
simplbi |
⊢ ( 𝑓 ∈ 𝑅 → 𝑓 ∈ ( ℕ0 ↑m ℙ ) ) |
68 |
7 3
|
elmap |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m ℙ ) ↔ 𝑓 : ℙ ⟶ ℕ0 ) |
69 |
67 68
|
sylib |
⊢ ( 𝑓 ∈ 𝑅 → 𝑓 : ℙ ⟶ ℕ0 ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → 𝑓 : ℙ ⟶ ℕ0 ) |
71 |
|
simplr |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
72 |
|
0re |
⊢ 0 ∈ ℝ |
73 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
74 |
71 72 73
|
sylancl |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
75 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
76 |
72 71 75
|
sylancr |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
77 |
|
flge0nn0 |
⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) ∈ ℕ0 ) |
78 |
74 76 77
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) ∈ ℕ0 ) |
79 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) ∈ ℕ0 → ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ∈ ℕ ) |
80 |
78 79
|
syl |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ∈ ℕ ) |
81 |
71
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑦 ∈ ℝ ) |
82 |
80
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ∈ ℕ ) |
83 |
82
|
nnred |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ∈ ℝ ) |
84 |
16
|
ssriv |
⊢ ℙ ⊆ ℤ |
85 |
|
zssre |
⊢ ℤ ⊆ ℝ |
86 |
84 85
|
sstri |
⊢ ℙ ⊆ ℝ |
87 |
|
simprl |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑞 ∈ ℙ ) |
88 |
86 87
|
sselid |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑞 ∈ ℝ ) |
89 |
74
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
90 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
91 |
72 81 90
|
sylancr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
92 |
|
flltp1 |
⊢ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ) |
93 |
89 92
|
syl |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ) |
94 |
81 89 83 91 93
|
lelttrd |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑦 < ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ) |
95 |
|
simprr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) |
96 |
81 83 88 94 95
|
ltletrd |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑦 < 𝑞 ) |
97 |
81 88
|
ltnled |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( 𝑦 < 𝑞 ↔ ¬ 𝑞 ≤ 𝑦 ) ) |
98 |
96 97
|
mpbid |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ¬ 𝑞 ≤ 𝑦 ) |
99 |
87
|
biantrurd |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( 𝑓 ‘ 𝑞 ) ∈ ℕ ↔ ( 𝑞 ∈ ℙ ∧ ( 𝑓 ‘ 𝑞 ) ∈ ℕ ) ) ) |
100 |
70
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → 𝑓 : ℙ ⟶ ℕ0 ) |
101 |
|
ffn |
⊢ ( 𝑓 : ℙ ⟶ ℕ0 → 𝑓 Fn ℙ ) |
102 |
|
elpreima |
⊢ ( 𝑓 Fn ℙ → ( 𝑞 ∈ ( ◡ 𝑓 “ ℕ ) ↔ ( 𝑞 ∈ ℙ ∧ ( 𝑓 ‘ 𝑞 ) ∈ ℕ ) ) ) |
103 |
100 101 102
|
3syl |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( 𝑞 ∈ ( ◡ 𝑓 “ ℕ ) ↔ ( 𝑞 ∈ ℙ ∧ ( 𝑓 ‘ 𝑞 ) ∈ ℕ ) ) ) |
104 |
99 103
|
bitr4d |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( 𝑓 ‘ 𝑞 ) ∈ ℕ ↔ 𝑞 ∈ ( ◡ 𝑓 “ ℕ ) ) ) |
105 |
|
simplr |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) |
106 |
|
breq1 |
⊢ ( 𝑘 = 𝑞 → ( 𝑘 ≤ 𝑦 ↔ 𝑞 ≤ 𝑦 ) ) |
107 |
106
|
rspccv |
⊢ ( ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 → ( 𝑞 ∈ ( ◡ 𝑓 “ ℕ ) → 𝑞 ≤ 𝑦 ) ) |
108 |
105 107
|
syl |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( 𝑞 ∈ ( ◡ 𝑓 “ ℕ ) → 𝑞 ≤ 𝑦 ) ) |
109 |
104 108
|
sylbid |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( 𝑓 ‘ 𝑞 ) ∈ ℕ → 𝑞 ≤ 𝑦 ) ) |
110 |
98 109
|
mtod |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ¬ ( 𝑓 ‘ 𝑞 ) ∈ ℕ ) |
111 |
100 87
|
ffvelrnd |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( 𝑓 ‘ 𝑞 ) ∈ ℕ0 ) |
112 |
|
elnn0 |
⊢ ( ( 𝑓 ‘ 𝑞 ) ∈ ℕ0 ↔ ( ( 𝑓 ‘ 𝑞 ) ∈ ℕ ∨ ( 𝑓 ‘ 𝑞 ) = 0 ) ) |
113 |
111 112
|
sylib |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ( 𝑓 ‘ 𝑞 ) ∈ ℕ ∨ ( 𝑓 ‘ 𝑞 ) = 0 ) ) |
114 |
113
|
ord |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( ¬ ( 𝑓 ‘ 𝑞 ) ∈ ℕ → ( 𝑓 ‘ 𝑞 ) = 0 ) ) |
115 |
110 114
|
mpd |
⊢ ( ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) ∧ ( 𝑞 ∈ ℙ ∧ ( ( ⌊ ‘ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) + 1 ) ≤ 𝑞 ) ) → ( 𝑓 ‘ 𝑞 ) = 0 ) |
116 |
1 62 70 80 115
|
1arithlem4 |
⊢ ( ( ( 𝑓 ∈ 𝑅 ∧ 𝑦 ∈ ℝ ) ∧ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℕ 𝑓 = ( 𝑀 ‘ 𝑥 ) ) |
117 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ ℕ ) ⊆ dom 𝑓 |
118 |
69
|
fdmd |
⊢ ( 𝑓 ∈ 𝑅 → dom 𝑓 = ℙ ) |
119 |
118 86
|
eqsstrdi |
⊢ ( 𝑓 ∈ 𝑅 → dom 𝑓 ⊆ ℝ ) |
120 |
117 119
|
sstrid |
⊢ ( 𝑓 ∈ 𝑅 → ( ◡ 𝑓 “ ℕ ) ⊆ ℝ ) |
121 |
66
|
simprbi |
⊢ ( 𝑓 ∈ 𝑅 → ( ◡ 𝑓 “ ℕ ) ∈ Fin ) |
122 |
|
fimaxre2 |
⊢ ( ( ( ◡ 𝑓 “ ℕ ) ⊆ ℝ ∧ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) |
123 |
120 121 122
|
syl2anc |
⊢ ( 𝑓 ∈ 𝑅 → ∃ 𝑦 ∈ ℝ ∀ 𝑘 ∈ ( ◡ 𝑓 “ ℕ ) 𝑘 ≤ 𝑦 ) |
124 |
116 123
|
r19.29a |
⊢ ( 𝑓 ∈ 𝑅 → ∃ 𝑥 ∈ ℕ 𝑓 = ( 𝑀 ‘ 𝑥 ) ) |
125 |
124
|
rgen |
⊢ ∀ 𝑓 ∈ 𝑅 ∃ 𝑥 ∈ ℕ 𝑓 = ( 𝑀 ‘ 𝑥 ) |
126 |
|
dffo3 |
⊢ ( 𝑀 : ℕ –onto→ 𝑅 ↔ ( 𝑀 : ℕ ⟶ 𝑅 ∧ ∀ 𝑓 ∈ 𝑅 ∃ 𝑥 ∈ ℕ 𝑓 = ( 𝑀 ‘ 𝑥 ) ) ) |
127 |
42 125 126
|
mpbir2an |
⊢ 𝑀 : ℕ –onto→ 𝑅 |
128 |
|
df-f1o |
⊢ ( 𝑀 : ℕ –1-1-onto→ 𝑅 ↔ ( 𝑀 : ℕ –1-1→ 𝑅 ∧ 𝑀 : ℕ –onto→ 𝑅 ) ) |
129 |
61 127 128
|
mpbir2an |
⊢ 𝑀 : ℕ –1-1-onto→ 𝑅 |