| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arith.1 | ⊢ 𝑀  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑛 ) ) ) | 
						
							| 2 |  | 1arith.2 | ⊢ 𝑅  =  { 𝑒  ∈  ( ℕ0  ↑m  ℙ )  ∣  ( ◡ 𝑒  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | prmex | ⊢ ℙ  ∈  V | 
						
							| 4 | 3 | mptex | ⊢ ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑛 ) )  ∈  V | 
						
							| 5 | 4 1 | fnmpti | ⊢ 𝑀  Fn  ℕ | 
						
							| 6 | 1 | 1arithlem3 | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0 ) | 
						
							| 7 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 8 | 7 3 | elmap | ⊢ ( ( 𝑀 ‘ 𝑥 )  ∈  ( ℕ0  ↑m  ℙ )  ↔  ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0 ) | 
						
							| 9 | 6 8 | sylibr | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑀 ‘ 𝑥 )  ∈  ( ℕ0  ↑m  ℙ ) ) | 
						
							| 10 |  | fzfi | ⊢ ( 1 ... 𝑥 )  ∈  Fin | 
						
							| 11 |  | ffn | ⊢ ( ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0  →  ( 𝑀 ‘ 𝑥 )  Fn  ℙ ) | 
						
							| 12 |  | elpreima | ⊢ ( ( 𝑀 ‘ 𝑥 )  Fn  ℙ  →  ( 𝑞  ∈  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ↔  ( 𝑞  ∈  ℙ  ∧  ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  ∈  ℕ ) ) ) | 
						
							| 13 | 6 11 12 | 3syl | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑞  ∈  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ↔  ( 𝑞  ∈  ℙ  ∧  ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  ∈  ℕ ) ) ) | 
						
							| 14 | 1 | 1arithlem2 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( 𝑞  pCnt  𝑥 ) ) | 
						
							| 15 | 14 | eleq1d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  ∈  ℕ  ↔  ( 𝑞  pCnt  𝑥 )  ∈  ℕ ) ) | 
						
							| 16 |  | prmz | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℤ ) | 
						
							| 17 |  | id | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℕ ) | 
						
							| 18 |  | dvdsle | ⊢ ( ( 𝑞  ∈  ℤ  ∧  𝑥  ∈  ℕ )  →  ( 𝑞  ∥  𝑥  →  𝑞  ≤  𝑥 ) ) | 
						
							| 19 | 16 17 18 | syl2anr | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  ∥  𝑥  →  𝑞  ≤  𝑥 ) ) | 
						
							| 20 |  | pcelnn | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑞  pCnt  𝑥 )  ∈  ℕ  ↔  𝑞  ∥  𝑥 ) ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑞  pCnt  𝑥 )  ∈  ℕ  ↔  𝑞  ∥  𝑥 ) ) | 
						
							| 22 |  | prmnn | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℕ ) | 
						
							| 23 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 24 | 22 23 | eleqtrdi | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 |  | nnz | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℤ ) | 
						
							| 26 |  | elfz5 | ⊢ ( ( 𝑞  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑞  ∈  ( 1 ... 𝑥 )  ↔  𝑞  ≤  𝑥 ) ) | 
						
							| 27 | 24 25 26 | syl2anr | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  ∈  ( 1 ... 𝑥 )  ↔  𝑞  ≤  𝑥 ) ) | 
						
							| 28 | 19 21 27 | 3imtr4d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑞  pCnt  𝑥 )  ∈  ℕ  →  𝑞  ∈  ( 1 ... 𝑥 ) ) ) | 
						
							| 29 | 15 28 | sylbid | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  ∈  ℕ  →  𝑞  ∈  ( 1 ... 𝑥 ) ) ) | 
						
							| 30 | 29 | expimpd | ⊢ ( 𝑥  ∈  ℕ  →  ( ( 𝑞  ∈  ℙ  ∧  ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  ∈  ℕ )  →  𝑞  ∈  ( 1 ... 𝑥 ) ) ) | 
						
							| 31 | 13 30 | sylbid | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑞  ∈  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  →  𝑞  ∈  ( 1 ... 𝑥 ) ) ) | 
						
							| 32 | 31 | ssrdv | ⊢ ( 𝑥  ∈  ℕ  →  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ⊆  ( 1 ... 𝑥 ) ) | 
						
							| 33 |  | ssfi | ⊢ ( ( ( 1 ... 𝑥 )  ∈  Fin  ∧  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ⊆  ( 1 ... 𝑥 ) )  →  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ∈  Fin ) | 
						
							| 34 | 10 32 33 | sylancr | ⊢ ( 𝑥  ∈  ℕ  →  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ∈  Fin ) | 
						
							| 35 |  | cnveq | ⊢ ( 𝑒  =  ( 𝑀 ‘ 𝑥 )  →  ◡ 𝑒  =  ◡ ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 36 | 35 | imaeq1d | ⊢ ( 𝑒  =  ( 𝑀 ‘ 𝑥 )  →  ( ◡ 𝑒  “  ℕ )  =  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑒  =  ( 𝑀 ‘ 𝑥 )  →  ( ( ◡ 𝑒  “  ℕ )  ∈  Fin  ↔  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ∈  Fin ) ) | 
						
							| 38 | 37 2 | elrab2 | ⊢ ( ( 𝑀 ‘ 𝑥 )  ∈  𝑅  ↔  ( ( 𝑀 ‘ 𝑥 )  ∈  ( ℕ0  ↑m  ℙ )  ∧  ( ◡ ( 𝑀 ‘ 𝑥 )  “  ℕ )  ∈  Fin ) ) | 
						
							| 39 | 9 34 38 | sylanbrc | ⊢ ( 𝑥  ∈  ℕ  →  ( 𝑀 ‘ 𝑥 )  ∈  𝑅 ) | 
						
							| 40 | 39 | rgen | ⊢ ∀ 𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 )  ∈  𝑅 | 
						
							| 41 |  | ffnfv | ⊢ ( 𝑀 : ℕ ⟶ 𝑅  ↔  ( 𝑀  Fn  ℕ  ∧  ∀ 𝑥  ∈  ℕ ( 𝑀 ‘ 𝑥 )  ∈  𝑅 ) ) | 
						
							| 42 | 5 40 41 | mpbir2an | ⊢ 𝑀 : ℕ ⟶ 𝑅 | 
						
							| 43 | 14 | adantlr | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( 𝑞  pCnt  𝑥 ) ) | 
						
							| 44 | 1 | 1arithlem2 | ⊢ ( ( 𝑦  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 )  =  ( 𝑞  pCnt  𝑦 ) ) | 
						
							| 45 | 44 | adantll | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 )  =  ( 𝑞  pCnt  𝑦 ) ) | 
						
							| 46 | 43 45 | eqeq12d | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  ∧  𝑞  ∈  ℙ )  →  ( ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 )  ↔  ( 𝑞  pCnt  𝑥 )  =  ( 𝑞  pCnt  𝑦 ) ) ) | 
						
							| 47 | 46 | ralbidva | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ∀ 𝑞  ∈  ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 )  ↔  ∀ 𝑞  ∈  ℙ ( 𝑞  pCnt  𝑥 )  =  ( 𝑞  pCnt  𝑦 ) ) ) | 
						
							| 48 | 1 | 1arithlem3 | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝑀 ‘ 𝑦 ) : ℙ ⟶ ℕ0 ) | 
						
							| 49 |  | ffn | ⊢ ( ( 𝑀 ‘ 𝑦 ) : ℙ ⟶ ℕ0  →  ( 𝑀 ‘ 𝑦 )  Fn  ℙ ) | 
						
							| 50 |  | eqfnfv | ⊢ ( ( ( 𝑀 ‘ 𝑥 )  Fn  ℙ  ∧  ( 𝑀 ‘ 𝑦 )  Fn  ℙ )  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  ↔  ∀ 𝑞  ∈  ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ) ) | 
						
							| 51 | 11 49 50 | syl2an | ⊢ ( ( ( 𝑀 ‘ 𝑥 ) : ℙ ⟶ ℕ0  ∧  ( 𝑀 ‘ 𝑦 ) : ℙ ⟶ ℕ0 )  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  ↔  ∀ 𝑞  ∈  ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ) ) | 
						
							| 52 | 6 48 51 | syl2an | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  ↔  ∀ 𝑞  ∈  ℙ ( ( 𝑀 ‘ 𝑥 ) ‘ 𝑞 )  =  ( ( 𝑀 ‘ 𝑦 ) ‘ 𝑞 ) ) ) | 
						
							| 53 |  | nnnn0 | ⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℕ0 ) | 
						
							| 54 |  | nnnn0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 ) | 
						
							| 55 |  | pc11 | ⊢ ( ( 𝑥  ∈  ℕ0  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑥  =  𝑦  ↔  ∀ 𝑞  ∈  ℙ ( 𝑞  pCnt  𝑥 )  =  ( 𝑞  pCnt  𝑦 ) ) ) | 
						
							| 56 | 53 54 55 | syl2an | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( 𝑥  =  𝑦  ↔  ∀ 𝑞  ∈  ℙ ( 𝑞  pCnt  𝑥 )  =  ( 𝑞  pCnt  𝑦 ) ) ) | 
						
							| 57 | 47 52 56 | 3bitr4d | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 58 | 57 | biimpd | ⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 59 | 58 | rgen2 | ⊢ ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 60 |  | dff13 | ⊢ ( 𝑀 : ℕ –1-1→ 𝑅  ↔  ( 𝑀 : ℕ ⟶ 𝑅  ∧  ∀ 𝑥  ∈  ℕ ∀ 𝑦  ∈  ℕ ( ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 61 | 42 59 60 | mpbir2an | ⊢ 𝑀 : ℕ –1-1→ 𝑅 | 
						
							| 62 |  | eqid | ⊢ ( 𝑔  ∈  ℕ  ↦  if ( 𝑔  ∈  ℙ ,  ( 𝑔 ↑ ( 𝑓 ‘ 𝑔 ) ) ,  1 ) )  =  ( 𝑔  ∈  ℕ  ↦  if ( 𝑔  ∈  ℙ ,  ( 𝑔 ↑ ( 𝑓 ‘ 𝑔 ) ) ,  1 ) ) | 
						
							| 63 |  | cnveq | ⊢ ( 𝑒  =  𝑓  →  ◡ 𝑒  =  ◡ 𝑓 ) | 
						
							| 64 | 63 | imaeq1d | ⊢ ( 𝑒  =  𝑓  →  ( ◡ 𝑒  “  ℕ )  =  ( ◡ 𝑓  “  ℕ ) ) | 
						
							| 65 | 64 | eleq1d | ⊢ ( 𝑒  =  𝑓  →  ( ( ◡ 𝑒  “  ℕ )  ∈  Fin  ↔  ( ◡ 𝑓  “  ℕ )  ∈  Fin ) ) | 
						
							| 66 | 65 2 | elrab2 | ⊢ ( 𝑓  ∈  𝑅  ↔  ( 𝑓  ∈  ( ℕ0  ↑m  ℙ )  ∧  ( ◡ 𝑓  “  ℕ )  ∈  Fin ) ) | 
						
							| 67 | 66 | simplbi | ⊢ ( 𝑓  ∈  𝑅  →  𝑓  ∈  ( ℕ0  ↑m  ℙ ) ) | 
						
							| 68 | 7 3 | elmap | ⊢ ( 𝑓  ∈  ( ℕ0  ↑m  ℙ )  ↔  𝑓 : ℙ ⟶ ℕ0 ) | 
						
							| 69 | 67 68 | sylib | ⊢ ( 𝑓  ∈  𝑅  →  𝑓 : ℙ ⟶ ℕ0 ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  𝑓 : ℙ ⟶ ℕ0 ) | 
						
							| 71 |  | simplr | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 72 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 73 |  | ifcl | ⊢ ( ( 𝑦  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 74 | 71 72 73 | sylancl | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 75 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) | 
						
							| 76 | 72 71 75 | sylancr | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  0  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) | 
						
							| 77 |  | flge0nn0 | ⊢ ( ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  →  ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  ∈  ℕ0 ) | 
						
							| 78 | 74 76 77 | syl2anc | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  ∈  ℕ0 ) | 
						
							| 79 |  | nn0p1nn | ⊢ ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  ∈  ℕ0  →  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ∈  ℕ ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ∈  ℕ ) | 
						
							| 81 | 71 | adantr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 82 | 80 | adantr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ∈  ℕ ) | 
						
							| 83 | 82 | nnred | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ∈  ℝ ) | 
						
							| 84 | 16 | ssriv | ⊢ ℙ  ⊆  ℤ | 
						
							| 85 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 86 | 84 85 | sstri | ⊢ ℙ  ⊆  ℝ | 
						
							| 87 |  | simprl | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑞  ∈  ℙ ) | 
						
							| 88 | 86 87 | sselid | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑞  ∈  ℝ ) | 
						
							| 89 | 74 | adantr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ ) | 
						
							| 90 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  𝑦  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) | 
						
							| 91 | 72 81 90 | sylancr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑦  ≤  if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) ) | 
						
							| 92 |  | flltp1 | ⊢ ( if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  ∈  ℝ  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  <  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 ) ) | 
						
							| 93 | 89 92 | syl | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  if ( 0  ≤  𝑦 ,  𝑦 ,  0 )  <  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 ) ) | 
						
							| 94 | 81 89 83 91 93 | lelttrd | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑦  <  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 ) ) | 
						
							| 95 |  | simprr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) | 
						
							| 96 | 81 83 88 94 95 | ltletrd | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑦  <  𝑞 ) | 
						
							| 97 | 81 88 | ltnled | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( 𝑦  <  𝑞  ↔  ¬  𝑞  ≤  𝑦 ) ) | 
						
							| 98 | 96 97 | mpbid | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ¬  𝑞  ≤  𝑦 ) | 
						
							| 99 | 87 | biantrurd | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( 𝑓 ‘ 𝑞 )  ∈  ℕ  ↔  ( 𝑞  ∈  ℙ  ∧  ( 𝑓 ‘ 𝑞 )  ∈  ℕ ) ) ) | 
						
							| 100 | 70 | adantr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  𝑓 : ℙ ⟶ ℕ0 ) | 
						
							| 101 |  | ffn | ⊢ ( 𝑓 : ℙ ⟶ ℕ0  →  𝑓  Fn  ℙ ) | 
						
							| 102 |  | elpreima | ⊢ ( 𝑓  Fn  ℙ  →  ( 𝑞  ∈  ( ◡ 𝑓  “  ℕ )  ↔  ( 𝑞  ∈  ℙ  ∧  ( 𝑓 ‘ 𝑞 )  ∈  ℕ ) ) ) | 
						
							| 103 | 100 101 102 | 3syl | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( 𝑞  ∈  ( ◡ 𝑓  “  ℕ )  ↔  ( 𝑞  ∈  ℙ  ∧  ( 𝑓 ‘ 𝑞 )  ∈  ℕ ) ) ) | 
						
							| 104 | 99 103 | bitr4d | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( 𝑓 ‘ 𝑞 )  ∈  ℕ  ↔  𝑞  ∈  ( ◡ 𝑓  “  ℕ ) ) ) | 
						
							| 105 |  | simplr | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 ) | 
						
							| 106 |  | breq1 | ⊢ ( 𝑘  =  𝑞  →  ( 𝑘  ≤  𝑦  ↔  𝑞  ≤  𝑦 ) ) | 
						
							| 107 | 106 | rspccv | ⊢ ( ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦  →  ( 𝑞  ∈  ( ◡ 𝑓  “  ℕ )  →  𝑞  ≤  𝑦 ) ) | 
						
							| 108 | 105 107 | syl | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( 𝑞  ∈  ( ◡ 𝑓  “  ℕ )  →  𝑞  ≤  𝑦 ) ) | 
						
							| 109 | 104 108 | sylbid | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( 𝑓 ‘ 𝑞 )  ∈  ℕ  →  𝑞  ≤  𝑦 ) ) | 
						
							| 110 | 98 109 | mtod | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ¬  ( 𝑓 ‘ 𝑞 )  ∈  ℕ ) | 
						
							| 111 | 100 87 | ffvelcdmd | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( 𝑓 ‘ 𝑞 )  ∈  ℕ0 ) | 
						
							| 112 |  | elnn0 | ⊢ ( ( 𝑓 ‘ 𝑞 )  ∈  ℕ0  ↔  ( ( 𝑓 ‘ 𝑞 )  ∈  ℕ  ∨  ( 𝑓 ‘ 𝑞 )  =  0 ) ) | 
						
							| 113 | 111 112 | sylib | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ( 𝑓 ‘ 𝑞 )  ∈  ℕ  ∨  ( 𝑓 ‘ 𝑞 )  =  0 ) ) | 
						
							| 114 | 113 | ord | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( ¬  ( 𝑓 ‘ 𝑞 )  ∈  ℕ  →  ( 𝑓 ‘ 𝑞 )  =  0 ) ) | 
						
							| 115 | 110 114 | mpd | ⊢ ( ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  ∧  ( 𝑞  ∈  ℙ  ∧  ( ( ⌊ ‘ if ( 0  ≤  𝑦 ,  𝑦 ,  0 ) )  +  1 )  ≤  𝑞 ) )  →  ( 𝑓 ‘ 𝑞 )  =  0 ) | 
						
							| 116 | 1 62 70 80 115 | 1arithlem4 | ⊢ ( ( ( 𝑓  ∈  𝑅  ∧  𝑦  ∈  ℝ )  ∧  ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℕ 𝑓  =  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 117 |  | cnvimass | ⊢ ( ◡ 𝑓  “  ℕ )  ⊆  dom  𝑓 | 
						
							| 118 | 69 | fdmd | ⊢ ( 𝑓  ∈  𝑅  →  dom  𝑓  =  ℙ ) | 
						
							| 119 | 118 86 | eqsstrdi | ⊢ ( 𝑓  ∈  𝑅  →  dom  𝑓  ⊆  ℝ ) | 
						
							| 120 | 117 119 | sstrid | ⊢ ( 𝑓  ∈  𝑅  →  ( ◡ 𝑓  “  ℕ )  ⊆  ℝ ) | 
						
							| 121 | 66 | simprbi | ⊢ ( 𝑓  ∈  𝑅  →  ( ◡ 𝑓  “  ℕ )  ∈  Fin ) | 
						
							| 122 |  | fimaxre2 | ⊢ ( ( ( ◡ 𝑓  “  ℕ )  ⊆  ℝ  ∧  ( ◡ 𝑓  “  ℕ )  ∈  Fin )  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 ) | 
						
							| 123 | 120 121 122 | syl2anc | ⊢ ( 𝑓  ∈  𝑅  →  ∃ 𝑦  ∈  ℝ ∀ 𝑘  ∈  ( ◡ 𝑓  “  ℕ ) 𝑘  ≤  𝑦 ) | 
						
							| 124 | 116 123 | r19.29a | ⊢ ( 𝑓  ∈  𝑅  →  ∃ 𝑥  ∈  ℕ 𝑓  =  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 125 | 124 | rgen | ⊢ ∀ 𝑓  ∈  𝑅 ∃ 𝑥  ∈  ℕ 𝑓  =  ( 𝑀 ‘ 𝑥 ) | 
						
							| 126 |  | dffo3 | ⊢ ( 𝑀 : ℕ –onto→ 𝑅  ↔  ( 𝑀 : ℕ ⟶ 𝑅  ∧  ∀ 𝑓  ∈  𝑅 ∃ 𝑥  ∈  ℕ 𝑓  =  ( 𝑀 ‘ 𝑥 ) ) ) | 
						
							| 127 | 42 125 126 | mpbir2an | ⊢ 𝑀 : ℕ –onto→ 𝑅 | 
						
							| 128 |  | df-f1o | ⊢ ( 𝑀 : ℕ –1-1-onto→ 𝑅  ↔  ( 𝑀 : ℕ –1-1→ 𝑅  ∧  𝑀 : ℕ –onto→ 𝑅 ) ) | 
						
							| 129 | 61 127 128 | mpbir2an | ⊢ 𝑀 : ℕ –1-1-onto→ 𝑅 |