Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
2 |
|
1arith.2 |
⊢ 𝑅 = { 𝑒 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑒 “ ℕ ) ∈ Fin } |
3 |
1 2
|
1arith |
⊢ 𝑀 : ℕ –1-1-onto→ 𝑅 |
4 |
|
f1ocnv |
⊢ ( 𝑀 : ℕ –1-1-onto→ 𝑅 → ◡ 𝑀 : 𝑅 –1-1-onto→ ℕ ) |
5 |
3 4
|
ax-mp |
⊢ ◡ 𝑀 : 𝑅 –1-1-onto→ ℕ |
6 |
|
f1ofveu |
⊢ ( ( ◡ 𝑀 : 𝑅 –1-1-onto→ ℕ ∧ 𝑧 ∈ ℕ ) → ∃! 𝑔 ∈ 𝑅 ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) |
7 |
5 6
|
mpan |
⊢ ( 𝑧 ∈ ℕ → ∃! 𝑔 ∈ 𝑅 ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) |
8 |
|
f1ocnvfvb |
⊢ ( ( 𝑀 : ℕ –1-1-onto→ 𝑅 ∧ 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅 ) → ( ( 𝑀 ‘ 𝑧 ) = 𝑔 ↔ ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) ) |
9 |
3 8
|
mp3an1 |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑔 ∈ 𝑅 ) → ( ( 𝑀 ‘ 𝑧 ) = 𝑔 ↔ ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) ) |
10 |
9
|
reubidva |
⊢ ( 𝑧 ∈ ℕ → ( ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 ↔ ∃! 𝑔 ∈ 𝑅 ( ◡ 𝑀 ‘ 𝑔 ) = 𝑧 ) ) |
11 |
7 10
|
mpbird |
⊢ ( 𝑧 ∈ ℕ → ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 ) |
12 |
11
|
rgen |
⊢ ∀ 𝑧 ∈ ℕ ∃! 𝑔 ∈ 𝑅 ( 𝑀 ‘ 𝑧 ) = 𝑔 |