Metamath Proof Explorer


Theorem 1arithlem1

Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)

Ref Expression
Hypothesis 1arith.1 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) )
Assertion 1arithlem1 ( 𝑁 ∈ ℕ → ( 𝑀𝑁 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 1arith.1 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) )
2 oveq2 ( 𝑛 = 𝑁 → ( 𝑝 pCnt 𝑛 ) = ( 𝑝 pCnt 𝑁 ) )
3 2 mpteq2dv ( 𝑛 = 𝑁 → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) )
4 prmex ℙ ∈ V
5 4 mptex ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ∈ V
6 3 1 5 fvmpt ( 𝑁 ∈ ℕ → ( 𝑀𝑁 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) )