Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
Assertion | 1arithlem1 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ‘ 𝑁 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
2 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑝 pCnt 𝑛 ) = ( 𝑝 pCnt 𝑁 ) ) | |
3 | 2 | mpteq2dv | ⊢ ( 𝑛 = 𝑁 → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ) |
4 | prmex | ⊢ ℙ ∈ V | |
5 | 4 | mptex | ⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ∈ V |
6 | 3 1 5 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ‘ 𝑁 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ) |