Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
2 |
1
|
1arithlem1 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ‘ 𝑁 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 ) = ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ‘ 𝑃 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 pCnt 𝑁 ) = ( 𝑃 pCnt 𝑁 ) ) |
5 |
|
eqid |
⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) |
6 |
|
ovex |
⊢ ( 𝑃 pCnt 𝑁 ) ∈ V |
7 |
4 5 6
|
fvmpt |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ‘ 𝑃 ) = ( 𝑃 pCnt 𝑁 ) ) |
8 |
3 7
|
sylan9eq |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 ) = ( 𝑃 pCnt 𝑁 ) ) |