| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arith.1 | ⊢ 𝑀  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑛 ) ) ) | 
						
							| 2 | 1 | 1arithlem1 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑀 ‘ 𝑁 )  =  ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑁 ) ) ) | 
						
							| 3 | 2 | fveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 )  =  ( ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑁 ) ) ‘ 𝑃 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  pCnt  𝑁 )  =  ( 𝑃  pCnt  𝑁 ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑁 ) )  =  ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑁 ) ) | 
						
							| 6 |  | ovex | ⊢ ( 𝑃  pCnt  𝑁 )  ∈  V | 
						
							| 7 | 4 5 6 | fvmpt | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑁 ) ) ‘ 𝑃 )  =  ( 𝑃  pCnt  𝑁 ) ) | 
						
							| 8 | 3 7 | sylan9eq | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 )  =  ( 𝑃  pCnt  𝑁 ) ) |