| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arith.1 | ⊢ 𝑀  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑝  ∈  ℙ  ↦  ( 𝑝  pCnt  𝑛 ) ) ) | 
						
							| 2 |  | 1arithlem4.2 | ⊢ 𝐺  =  ( 𝑦  ∈  ℕ  ↦  if ( 𝑦  ∈  ℙ ,  ( 𝑦 ↑ ( 𝐹 ‘ 𝑦 ) ) ,  1 ) ) | 
						
							| 3 |  | 1arithlem4.3 | ⊢ ( 𝜑  →  𝐹 : ℙ ⟶ ℕ0 ) | 
						
							| 4 |  | 1arithlem4.4 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 5 |  | 1arithlem4.5 | ⊢ ( ( 𝜑  ∧  ( 𝑞  ∈  ℙ  ∧  𝑁  ≤  𝑞 ) )  →  ( 𝐹 ‘ 𝑞 )  =  0 ) | 
						
							| 6 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℙ )  →  ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ℙ ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 8 | 2 7 | pcmptcl | ⊢ ( 𝜑  →  ( 𝐺 : ℕ ⟶ ℕ  ∧  seq 1 (  ·  ,  𝐺 ) : ℕ ⟶ ℕ ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐺 ) : ℕ ⟶ ℕ ) | 
						
							| 10 | 9 4 | ffvelcdmd | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 11 | 1 | 1arithlem2 | ⊢ ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 )  ∈  ℕ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 )  =  ( 𝑞  pCnt  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 12 | 10 11 | sylan | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 )  =  ( 𝑞  pCnt  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 13 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ∀ 𝑦  ∈  ℙ ( 𝐹 ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  𝑁  ∈  ℕ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  𝑞  ∈  ℙ ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝑞  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 17 | 2 13 14 15 16 | pcmpt | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  pCnt  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) )  =  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  0 ) ) | 
						
							| 18 | 14 | nnred | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  𝑁  ∈  ℝ ) | 
						
							| 19 |  | prmz | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℤ ) | 
						
							| 20 | 19 | zred | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  𝑞  ∈  ℝ ) | 
						
							| 22 | 5 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑁  ≤  𝑞 )  →  ( 𝐹 ‘ 𝑞 )  =  0 ) | 
						
							| 23 | 22 | ifeq2d | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑁  ≤  𝑞 )  →  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  ( 𝐹 ‘ 𝑞 ) )  =  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  0 ) ) | 
						
							| 24 |  | ifid | ⊢ if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  ( 𝐹 ‘ 𝑞 ) )  =  ( 𝐹 ‘ 𝑞 ) | 
						
							| 25 | 23 24 | eqtr3di | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑁  ≤  𝑞 )  →  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  0 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 26 |  | iftrue | ⊢ ( 𝑞  ≤  𝑁  →  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  0 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  ℙ )  ∧  𝑞  ≤  𝑁 )  →  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  0 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 28 | 18 21 25 27 | lecasei | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  if ( 𝑞  ≤  𝑁 ,  ( 𝐹 ‘ 𝑞 ) ,  0 )  =  ( 𝐹 ‘ 𝑞 ) ) | 
						
							| 29 | 12 17 28 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑞  ∈  ℙ )  →  ( 𝐹 ‘ 𝑞 )  =  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑞  ∈  ℙ ( 𝐹 ‘ 𝑞 )  =  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) | 
						
							| 31 | 1 | 1arithlem3 | ⊢ ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 )  ∈  ℕ  →  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) | 
						
							| 32 | 10 31 | syl | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) | 
						
							| 33 |  | ffn | ⊢ ( 𝐹 : ℙ ⟶ ℕ0  →  𝐹  Fn  ℙ ) | 
						
							| 34 |  | ffn | ⊢ ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0  →  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) )  Fn  ℙ ) | 
						
							| 35 |  | eqfnfv | ⊢ ( ( 𝐹  Fn  ℙ  ∧  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) )  Fn  ℙ )  →  ( 𝐹  =  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) )  ↔  ∀ 𝑞  ∈  ℙ ( 𝐹 ‘ 𝑞 )  =  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) | 
						
							| 36 | 33 34 35 | syl2an | ⊢ ( ( 𝐹 : ℙ ⟶ ℕ0  ∧  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 )  →  ( 𝐹  =  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) )  ↔  ∀ 𝑞  ∈  ℙ ( 𝐹 ‘ 𝑞 )  =  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) | 
						
							| 37 | 3 32 36 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  =  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) )  ↔  ∀ 𝑞  ∈  ℙ ( 𝐹 ‘ 𝑞 )  =  ( ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) | 
						
							| 38 | 30 37 | mpbird | ⊢ ( 𝜑  →  𝐹  =  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑥  =  ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 )  →  ( 𝑀 ‘ 𝑥 )  =  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) ) | 
						
							| 40 | 39 | rspceeqv | ⊢ ( ( ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 )  ∈  ℕ  ∧  𝐹  =  ( 𝑀 ‘ ( seq 1 (  ·  ,  𝐺 ) ‘ 𝑁 ) ) )  →  ∃ 𝑥  ∈  ℕ 𝐹  =  ( 𝑀 ‘ 𝑥 ) ) | 
						
							| 41 | 10 38 40 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℕ 𝐹  =  ( 𝑀 ‘ 𝑥 ) ) |