Step |
Hyp |
Ref |
Expression |
1 |
|
1arith.1 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
2 |
|
1arithlem4.2 |
⊢ 𝐺 = ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ ℙ , ( 𝑦 ↑ ( 𝐹 ‘ 𝑦 ) ) , 1 ) ) |
3 |
|
1arithlem4.3 |
⊢ ( 𝜑 → 𝐹 : ℙ ⟶ ℕ0 ) |
4 |
|
1arithlem4.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
5 |
|
1arithlem4.5 |
⊢ ( ( 𝜑 ∧ ( 𝑞 ∈ ℙ ∧ 𝑁 ≤ 𝑞 ) ) → ( 𝐹 ‘ 𝑞 ) = 0 ) |
6 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℙ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℙ ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
8 |
2 7
|
pcmptcl |
⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐺 ) : ℕ ⟶ ℕ ) ) |
9 |
8
|
simprd |
⊢ ( 𝜑 → seq 1 ( · , 𝐺 ) : ℕ ⟶ ℕ ) |
10 |
9 4
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ ) |
11 |
1
|
1arithlem2 |
⊢ ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
12 |
10 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ∀ 𝑦 ∈ ℙ ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = 𝑞 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑞 ) ) |
17 |
2 13 14 15 16
|
pcmpt |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) = if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) ) |
18 |
14
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
19 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
20 |
19
|
zred |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℝ ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℝ ) |
22 |
5
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑁 ≤ 𝑞 ) → ( 𝐹 ‘ 𝑞 ) = 0 ) |
23 |
22
|
ifeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑁 ≤ 𝑞 ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , ( 𝐹 ‘ 𝑞 ) ) = if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) ) |
24 |
|
ifid |
⊢ if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , ( 𝐹 ‘ 𝑞 ) ) = ( 𝐹 ‘ 𝑞 ) |
25 |
23 24
|
eqtr3di |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑁 ≤ 𝑞 ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
26 |
|
iftrue |
⊢ ( 𝑞 ≤ 𝑁 → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) ∧ 𝑞 ≤ 𝑁 ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
28 |
18 21 25 27
|
lecasei |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → if ( 𝑞 ≤ 𝑁 , ( 𝐹 ‘ 𝑞 ) , 0 ) = ( 𝐹 ‘ 𝑞 ) ) |
29 |
12 17 28
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℙ ) → ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) |
31 |
1
|
1arithlem3 |
⊢ ( ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ → ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) |
32 |
10 31
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) |
33 |
|
ffn |
⊢ ( 𝐹 : ℙ ⟶ ℕ0 → 𝐹 Fn ℙ ) |
34 |
|
ffn |
⊢ ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 → ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) Fn ℙ ) |
35 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn ℙ ∧ ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) Fn ℙ ) → ( 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) |
36 |
33 34 35
|
syl2an |
⊢ ( ( 𝐹 : ℙ ⟶ ℕ0 ∧ ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) : ℙ ⟶ ℕ0 ) → ( 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) |
37 |
3 32 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ↔ ∀ 𝑞 ∈ ℙ ( 𝐹 ‘ 𝑞 ) = ( ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ‘ 𝑞 ) ) ) |
38 |
30 37
|
mpbird |
⊢ ( 𝜑 → 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
39 |
|
fveq2 |
⊢ ( 𝑥 = ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) |
40 |
39
|
rspceeqv |
⊢ ( ( ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ∈ ℕ ∧ 𝐹 = ( 𝑀 ‘ ( seq 1 ( · , 𝐺 ) ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ℕ 𝐹 = ( 𝑀 ‘ 𝑥 ) ) |
41 |
10 38 40
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℕ 𝐹 = ( 𝑀 ‘ 𝑥 ) ) |