Step |
Hyp |
Ref |
Expression |
1 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
2 |
|
neg1ne0 |
⊢ - 1 ≠ 0 |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
|
3nn |
⊢ 3 ∈ ℕ |
5 |
|
nndivre |
⊢ ( ( 2 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 2 / 3 ) ∈ ℝ ) |
6 |
3 4 5
|
mp2an |
⊢ ( 2 / 3 ) ∈ ℝ |
7 |
6
|
recni |
⊢ ( 2 / 3 ) ∈ ℂ |
8 |
|
cxpef |
⊢ ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( 2 / 3 ) ∈ ℂ ) → ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( exp ‘ ( ( 2 / 3 ) · ( log ‘ - 1 ) ) ) ) |
9 |
1 2 7 8
|
mp3an |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( exp ‘ ( ( 2 / 3 ) · ( log ‘ - 1 ) ) ) |
10 |
|
logm1 |
⊢ ( log ‘ - 1 ) = ( i · π ) |
11 |
10
|
oveq2i |
⊢ ( ( 2 / 3 ) · ( log ‘ - 1 ) ) = ( ( 2 / 3 ) · ( i · π ) ) |
12 |
|
ax-icn |
⊢ i ∈ ℂ |
13 |
|
pire |
⊢ π ∈ ℝ |
14 |
13
|
recni |
⊢ π ∈ ℂ |
15 |
7 12 14
|
mul12i |
⊢ ( ( 2 / 3 ) · ( i · π ) ) = ( i · ( ( 2 / 3 ) · π ) ) |
16 |
11 15
|
eqtri |
⊢ ( ( 2 / 3 ) · ( log ‘ - 1 ) ) = ( i · ( ( 2 / 3 ) · π ) ) |
17 |
16
|
fveq2i |
⊢ ( exp ‘ ( ( 2 / 3 ) · ( log ‘ - 1 ) ) ) = ( exp ‘ ( i · ( ( 2 / 3 ) · π ) ) ) |
18 |
|
6nn |
⊢ 6 ∈ ℕ |
19 |
|
nndivre |
⊢ ( ( π ∈ ℝ ∧ 6 ∈ ℕ ) → ( π / 6 ) ∈ ℝ ) |
20 |
13 18 19
|
mp2an |
⊢ ( π / 6 ) ∈ ℝ |
21 |
20
|
recni |
⊢ ( π / 6 ) ∈ ℂ |
22 |
|
coshalfpip |
⊢ ( ( π / 6 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) + ( π / 6 ) ) ) = - ( sin ‘ ( π / 6 ) ) ) |
23 |
21 22
|
ax-mp |
⊢ ( cos ‘ ( ( π / 2 ) + ( π / 6 ) ) ) = - ( sin ‘ ( π / 6 ) ) |
24 |
|
2cn |
⊢ 2 ∈ ℂ |
25 |
|
2ne0 |
⊢ 2 ≠ 0 |
26 |
|
divrec2 |
⊢ ( ( π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( π / 2 ) = ( ( 1 / 2 ) · π ) ) |
27 |
14 24 25 26
|
mp3an |
⊢ ( π / 2 ) = ( ( 1 / 2 ) · π ) |
28 |
|
6cn |
⊢ 6 ∈ ℂ |
29 |
18
|
nnne0i |
⊢ 6 ≠ 0 |
30 |
|
divrec2 |
⊢ ( ( π ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( π / 6 ) = ( ( 1 / 6 ) · π ) ) |
31 |
14 28 29 30
|
mp3an |
⊢ ( π / 6 ) = ( ( 1 / 6 ) · π ) |
32 |
27 31
|
oveq12i |
⊢ ( ( π / 2 ) + ( π / 6 ) ) = ( ( ( 1 / 2 ) · π ) + ( ( 1 / 6 ) · π ) ) |
33 |
24 25
|
reccli |
⊢ ( 1 / 2 ) ∈ ℂ |
34 |
28 29
|
reccli |
⊢ ( 1 / 6 ) ∈ ℂ |
35 |
33 34 14
|
adddiri |
⊢ ( ( ( 1 / 2 ) + ( 1 / 6 ) ) · π ) = ( ( ( 1 / 2 ) · π ) + ( ( 1 / 6 ) · π ) ) |
36 |
|
halfpm6th |
⊢ ( ( ( 1 / 2 ) − ( 1 / 6 ) ) = ( 1 / 3 ) ∧ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) ) |
37 |
36
|
simpri |
⊢ ( ( 1 / 2 ) + ( 1 / 6 ) ) = ( 2 / 3 ) |
38 |
37
|
oveq1i |
⊢ ( ( ( 1 / 2 ) + ( 1 / 6 ) ) · π ) = ( ( 2 / 3 ) · π ) |
39 |
32 35 38
|
3eqtr2i |
⊢ ( ( π / 2 ) + ( π / 6 ) ) = ( ( 2 / 3 ) · π ) |
40 |
39
|
fveq2i |
⊢ ( cos ‘ ( ( π / 2 ) + ( π / 6 ) ) ) = ( cos ‘ ( ( 2 / 3 ) · π ) ) |
41 |
|
sincos6thpi |
⊢ ( ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) ∧ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) ) |
42 |
41
|
simpli |
⊢ ( sin ‘ ( π / 6 ) ) = ( 1 / 2 ) |
43 |
42
|
negeqi |
⊢ - ( sin ‘ ( π / 6 ) ) = - ( 1 / 2 ) |
44 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
45 |
|
divneg |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 1 / 2 ) = ( - 1 / 2 ) ) |
46 |
44 24 25 45
|
mp3an |
⊢ - ( 1 / 2 ) = ( - 1 / 2 ) |
47 |
43 46
|
eqtri |
⊢ - ( sin ‘ ( π / 6 ) ) = ( - 1 / 2 ) |
48 |
23 40 47
|
3eqtr3i |
⊢ ( cos ‘ ( ( 2 / 3 ) · π ) ) = ( - 1 / 2 ) |
49 |
|
sinhalfpip |
⊢ ( ( π / 6 ) ∈ ℂ → ( sin ‘ ( ( π / 2 ) + ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) ) |
50 |
21 49
|
ax-mp |
⊢ ( sin ‘ ( ( π / 2 ) + ( π / 6 ) ) ) = ( cos ‘ ( π / 6 ) ) |
51 |
39
|
fveq2i |
⊢ ( sin ‘ ( ( π / 2 ) + ( π / 6 ) ) ) = ( sin ‘ ( ( 2 / 3 ) · π ) ) |
52 |
41
|
simpri |
⊢ ( cos ‘ ( π / 6 ) ) = ( ( √ ‘ 3 ) / 2 ) |
53 |
50 51 52
|
3eqtr3i |
⊢ ( sin ‘ ( ( 2 / 3 ) · π ) ) = ( ( √ ‘ 3 ) / 2 ) |
54 |
53
|
oveq2i |
⊢ ( i · ( sin ‘ ( ( 2 / 3 ) · π ) ) ) = ( i · ( ( √ ‘ 3 ) / 2 ) ) |
55 |
|
3re |
⊢ 3 ∈ ℝ |
56 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
57 |
56
|
nn0ge0i |
⊢ 0 ≤ 3 |
58 |
|
resqrtcl |
⊢ ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) → ( √ ‘ 3 ) ∈ ℝ ) |
59 |
55 57 58
|
mp2an |
⊢ ( √ ‘ 3 ) ∈ ℝ |
60 |
59
|
recni |
⊢ ( √ ‘ 3 ) ∈ ℂ |
61 |
12 60 24 25
|
divassi |
⊢ ( ( i · ( √ ‘ 3 ) ) / 2 ) = ( i · ( ( √ ‘ 3 ) / 2 ) ) |
62 |
54 61
|
eqtr4i |
⊢ ( i · ( sin ‘ ( ( 2 / 3 ) · π ) ) ) = ( ( i · ( √ ‘ 3 ) ) / 2 ) |
63 |
48 62
|
oveq12i |
⊢ ( ( cos ‘ ( ( 2 / 3 ) · π ) ) + ( i · ( sin ‘ ( ( 2 / 3 ) · π ) ) ) ) = ( ( - 1 / 2 ) + ( ( i · ( √ ‘ 3 ) ) / 2 ) ) |
64 |
7 14
|
mulcli |
⊢ ( ( 2 / 3 ) · π ) ∈ ℂ |
65 |
|
efival |
⊢ ( ( ( 2 / 3 ) · π ) ∈ ℂ → ( exp ‘ ( i · ( ( 2 / 3 ) · π ) ) ) = ( ( cos ‘ ( ( 2 / 3 ) · π ) ) + ( i · ( sin ‘ ( ( 2 / 3 ) · π ) ) ) ) ) |
66 |
64 65
|
ax-mp |
⊢ ( exp ‘ ( i · ( ( 2 / 3 ) · π ) ) ) = ( ( cos ‘ ( ( 2 / 3 ) · π ) ) + ( i · ( sin ‘ ( ( 2 / 3 ) · π ) ) ) ) |
67 |
12 60
|
mulcli |
⊢ ( i · ( √ ‘ 3 ) ) ∈ ℂ |
68 |
1 67 24 25
|
divdiri |
⊢ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) = ( ( - 1 / 2 ) + ( ( i · ( √ ‘ 3 ) ) / 2 ) ) |
69 |
63 66 68
|
3eqtr4i |
⊢ ( exp ‘ ( i · ( ( 2 / 3 ) · π ) ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
70 |
9 17 69
|
3eqtri |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
71 |
|
1z |
⊢ 1 ∈ ℤ |
72 |
|
root1cj |
⊢ ( ( 3 ∈ ℕ ∧ 1 ∈ ℤ ) → ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ ( 3 − 1 ) ) ) |
73 |
4 71 72
|
mp2an |
⊢ ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ ( 3 − 1 ) ) |
74 |
|
cxpcl |
⊢ ( ( - 1 ∈ ℂ ∧ ( 2 / 3 ) ∈ ℂ ) → ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ ) |
75 |
1 7 74
|
mp2an |
⊢ ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ |
76 |
|
exp1 |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ∈ ℂ → ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) ) |
77 |
75 76
|
ax-mp |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( - 1 ↑𝑐 ( 2 / 3 ) ) |
78 |
77 70
|
eqtri |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) |
79 |
78
|
fveq2i |
⊢ ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) ) = ( ∗ ‘ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |
80 |
1 67
|
addcli |
⊢ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ∈ ℂ |
81 |
80 24
|
cjdivi |
⊢ ( 2 ≠ 0 → ( ∗ ‘ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) = ( ( ∗ ‘ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ) / ( ∗ ‘ 2 ) ) ) |
82 |
25 81
|
ax-mp |
⊢ ( ∗ ‘ ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ) = ( ( ∗ ‘ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ) / ( ∗ ‘ 2 ) ) |
83 |
1 67
|
cjaddi |
⊢ ( ∗ ‘ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ) = ( ( ∗ ‘ - 1 ) + ( ∗ ‘ ( i · ( √ ‘ 3 ) ) ) ) |
84 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
85 |
|
cjre |
⊢ ( - 1 ∈ ℝ → ( ∗ ‘ - 1 ) = - 1 ) |
86 |
84 85
|
ax-mp |
⊢ ( ∗ ‘ - 1 ) = - 1 |
87 |
12 60
|
cjmuli |
⊢ ( ∗ ‘ ( i · ( √ ‘ 3 ) ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ ( √ ‘ 3 ) ) ) |
88 |
|
cji |
⊢ ( ∗ ‘ i ) = - i |
89 |
|
cjre |
⊢ ( ( √ ‘ 3 ) ∈ ℝ → ( ∗ ‘ ( √ ‘ 3 ) ) = ( √ ‘ 3 ) ) |
90 |
59 89
|
ax-mp |
⊢ ( ∗ ‘ ( √ ‘ 3 ) ) = ( √ ‘ 3 ) |
91 |
88 90
|
oveq12i |
⊢ ( ( ∗ ‘ i ) · ( ∗ ‘ ( √ ‘ 3 ) ) ) = ( - i · ( √ ‘ 3 ) ) |
92 |
12 60
|
mulneg1i |
⊢ ( - i · ( √ ‘ 3 ) ) = - ( i · ( √ ‘ 3 ) ) |
93 |
87 91 92
|
3eqtri |
⊢ ( ∗ ‘ ( i · ( √ ‘ 3 ) ) ) = - ( i · ( √ ‘ 3 ) ) |
94 |
86 93
|
oveq12i |
⊢ ( ( ∗ ‘ - 1 ) + ( ∗ ‘ ( i · ( √ ‘ 3 ) ) ) ) = ( - 1 + - ( i · ( √ ‘ 3 ) ) ) |
95 |
1 67
|
negsubi |
⊢ ( - 1 + - ( i · ( √ ‘ 3 ) ) ) = ( - 1 − ( i · ( √ ‘ 3 ) ) ) |
96 |
83 94 95
|
3eqtri |
⊢ ( ∗ ‘ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ) = ( - 1 − ( i · ( √ ‘ 3 ) ) ) |
97 |
|
cjre |
⊢ ( 2 ∈ ℝ → ( ∗ ‘ 2 ) = 2 ) |
98 |
3 97
|
ax-mp |
⊢ ( ∗ ‘ 2 ) = 2 |
99 |
96 98
|
oveq12i |
⊢ ( ( ∗ ‘ ( - 1 + ( i · ( √ ‘ 3 ) ) ) ) / ( ∗ ‘ 2 ) ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
100 |
79 82 99
|
3eqtri |
⊢ ( ∗ ‘ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 1 ) ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
101 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
102 |
101
|
oveq2i |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ ( 3 − 1 ) ) = ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) |
103 |
73 100 102
|
3eqtr3ri |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) |
104 |
70 103
|
pm3.2i |
⊢ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) = ( ( - 1 + ( i · ( √ ‘ 3 ) ) ) / 2 ) ∧ ( ( - 1 ↑𝑐 ( 2 / 3 ) ) ↑ 2 ) = ( ( - 1 − ( i · ( √ ‘ 3 ) ) ) / 2 ) ) |