| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cvrat.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | 1cvrat.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | 1cvrat.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | 1cvrat.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | 1cvrat.u | ⊢  1   =  ( 1. ‘ 𝐾 ) | 
						
							| 6 |  | 1cvrat.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 7 |  | 1cvrat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 8 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝐾  ∈  Lat ) | 
						
							| 10 |  | simp21 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 11 | 1 7 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 13 |  | simp22 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 14 | 1 7 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 16 | 1 3 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 17 | 9 12 15 16 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑋 )  =  ( ( 𝑄  ∨  𝑃 )  ∧  𝑋 ) ) | 
						
							| 19 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐵  ∧  𝑃  ∈  𝐵 )  →  ( 𝑄  ∨  𝑃 )  ∈  𝐵 ) | 
						
							| 20 | 9 15 12 19 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( 𝑄  ∨  𝑃 )  ∈  𝐵 ) | 
						
							| 21 |  | simp23 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 22 | 1 4 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑃 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑄  ∨  𝑃 )  ∧  𝑋 )  =  ( 𝑋  ∧  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 23 | 9 20 21 22 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( ( 𝑄  ∨  𝑃 )  ∧  𝑋 )  =  ( 𝑋  ∧  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 24 | 18 23 | eqtrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑋 )  =  ( 𝑋  ∧  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 25 |  | simp1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝐾  ∈  HL ) | 
						
							| 26 | 21 13 10 | 3jca | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 ) ) | 
						
							| 27 |  | simp31 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 28 | 27 | necomd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑄  ≠  𝑃 ) | 
						
							| 29 |  | simp33 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ¬  𝑃  ≤  𝑋 ) | 
						
							| 30 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝐾  ∈  OP ) | 
						
							| 32 | 1 2 5 | ople1 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑄  ∈  𝐵 )  →  𝑄  ≤   1  ) | 
						
							| 33 | 31 15 32 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑄  ≤   1  ) | 
						
							| 34 |  | simp32 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑋 𝐶  1  ) | 
						
							| 35 | 1 2 3 5 6 7 | 1cvrjat | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  ( 𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( 𝑋  ∨  𝑃 )  =   1  ) | 
						
							| 36 | 25 21 10 34 29 35 | syl32anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( 𝑋  ∨  𝑃 )  =   1  ) | 
						
							| 37 | 33 36 | breqtrrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  𝑄  ≤  ( 𝑋  ∨  𝑃 ) ) | 
						
							| 38 | 1 2 3 4 7 | cvrat3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 ) )  →  ( ( 𝑄  ≠  𝑃  ∧  ¬  𝑃  ≤  𝑋  ∧  𝑄  ≤  ( 𝑋  ∨  𝑃 ) )  →  ( 𝑋  ∧  ( 𝑄  ∨  𝑃 ) )  ∈  𝐴 ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 ) )  ∧  ( 𝑄  ≠  𝑃  ∧  ¬  𝑃  ≤  𝑋  ∧  𝑄  ≤  ( 𝑋  ∨  𝑃 ) ) )  →  ( 𝑋  ∧  ( 𝑄  ∨  𝑃 ) )  ∈  𝐴 ) | 
						
							| 40 | 25 26 28 29 37 39 | syl23anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( 𝑋  ∧  ( 𝑄  ∨  𝑃 ) )  ∈  𝐴 ) | 
						
							| 41 | 24 40 | eqeltrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑋 𝐶  1   ∧  ¬  𝑃  ≤  𝑋 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑋 )  ∈  𝐴 ) |