Step |
Hyp |
Ref |
Expression |
1 |
|
1cvratex.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
1cvratex.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
1cvratex.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
4 |
|
1cvratex.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
|
1cvratex.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) → 𝐾 ∈ HL ) |
7 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
8 |
1 3 7 4 5
|
1cvrco |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐶 1 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ) ) |
9 |
8
|
biimp3a |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ) |
10 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
11 |
10 4 5
|
2dim |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ) → ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) |
12 |
6 9 11
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) → ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) |
13 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝐾 ∈ HL ) |
14 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝐾 ∈ OP ) |
16 |
13
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝐾 ∈ Lat ) |
17 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑋 ∈ 𝐵 ) |
18 |
1 7
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
19 |
15 17 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
20 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑞 ∈ 𝐴 ) |
21 |
1 5
|
atbase |
⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ 𝐵 ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑞 ∈ 𝐵 ) |
23 |
1 10
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) |
24 |
16 19 22 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) |
25 |
1 7
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ) |
26 |
15 24 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ) |
27 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑟 ∈ 𝐴 ) |
28 |
1 5
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵 ) |
29 |
27 28
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝑟 ∈ 𝐵 ) |
30 |
1 10
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ∈ 𝐵 ) |
31 |
16 24 29 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ∈ 𝐵 ) |
32 |
1 7
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ∈ 𝐵 ) |
33 |
15 31 32
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ∈ 𝐵 ) |
34 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
35 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
36 |
1 34 35
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) |
37 |
15 33 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) |
38 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) |
39 |
1 2 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ∈ 𝐵 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) < ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) |
40 |
13 24 31 38 39
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) < ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) |
41 |
1 2 7
|
opltcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) < ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
42 |
15 24 31 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) < ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
43 |
40 42
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) |
44 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
45 |
13 44
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → 𝐾 ∈ Poset ) |
46 |
1 35
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ 𝐵 ) |
47 |
15 46
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( 0. ‘ 𝐾 ) ∈ 𝐵 ) |
48 |
1 34 2
|
plelttr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( ( 0. ‘ 𝐾 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ) ) → ( ( ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) → ( 0. ‘ 𝐾 ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
49 |
45 47 33 26 48
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( 0. ‘ 𝐾 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) → ( 0. ‘ 𝐾 ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
50 |
37 43 49
|
mp2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( 0. ‘ 𝐾 ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) |
51 |
2
|
pltne |
⊢ ( ( 𝐾 ∈ HL ∧ ( 0. ‘ 𝐾 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ) → ( ( 0. ‘ 𝐾 ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) → ( 0. ‘ 𝐾 ) ≠ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
52 |
13 47 26 51
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( 0. ‘ 𝐾 ) < ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) → ( 0. ‘ 𝐾 ) ≠ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) ) |
53 |
50 52
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( 0. ‘ 𝐾 ) ≠ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) |
54 |
53
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
55 |
1 34 35 5
|
atle |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) |
56 |
13 26 54 55
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ) |
57 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) |
58 |
1 2 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) < ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) |
59 |
13 19 24 57 58
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) < ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) |
60 |
1 2 7
|
opltcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) < ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
61 |
15 19 24 60
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) < ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
62 |
59 61
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
63 |
1 7
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
64 |
15 17 63
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) = 𝑋 ) |
65 |
62 64
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < 𝑋 ) |
66 |
65
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < 𝑋 ) |
67 |
|
simpl11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
68 |
67 44
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
69 |
1 5
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
70 |
69
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
71 |
26
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ) |
72 |
|
simpl12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
73 |
1 34 2
|
plelttr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑝 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑝 ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < 𝑋 ) → 𝑝 < 𝑋 ) ) |
74 |
68 70 71 72 73
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑝 ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) < 𝑋 ) → 𝑝 < 𝑋 ) ) |
75 |
66 74
|
mpan2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑝 < 𝑋 ) ) |
76 |
75
|
reximdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ∃ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 < 𝑋 ) ) |
77 |
56 76
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) ∧ ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 < 𝑋 ) |
78 |
77
|
3exp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) → ( ( 𝑞 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 < 𝑋 ) ) ) |
79 |
78
|
rexlimdvv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) → ( ∃ 𝑞 ∈ 𝐴 ∃ 𝑟 ∈ 𝐴 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) 𝐶 ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( join ‘ 𝐾 ) 𝑞 ) ( join ‘ 𝐾 ) 𝑟 ) ) → ∃ 𝑝 ∈ 𝐴 𝑝 < 𝑋 ) ) |
80 |
12 79
|
mpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 𝐶 1 ) → ∃ 𝑝 ∈ 𝐴 𝑝 < 𝑋 ) |