| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cvratlt.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | 1cvratlt.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | 1cvratlt.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 4 |  | 1cvratlt.u | ⊢  1   =  ( 1. ‘ 𝐾 ) | 
						
							| 5 |  | 1cvratlt.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 6 |  | 1cvratlt.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 7 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  →  𝐾  ∈  HL ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | simprl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  →  𝑋 𝐶  1  ) | 
						
							| 10 | 1 3 4 5 6 | 1cvratex | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑋 𝐶  1  )  →  ∃ 𝑞  ∈  𝐴 𝑞  <  𝑋 ) | 
						
							| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  →  ∃ 𝑞  ∈  𝐴 𝑞  <  𝑋 ) | 
						
							| 12 |  | simp1l1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝐾  ∈  HL ) | 
						
							| 13 |  | simp1l2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝑃  ∈  𝐴 ) | 
						
							| 14 |  | simp2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝑞  ∈  𝐴 ) | 
						
							| 15 |  | simp1l3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝑋  ∈  𝐵 ) | 
						
							| 16 |  | simp1rr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝑃  ≤  𝑋 ) | 
						
							| 17 |  | simp3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝑞  <  𝑋 ) | 
						
							| 18 | 1 2 3 6 | atlelt | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑞  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑃  ≤  𝑋  ∧  𝑞  <  𝑋 ) )  →  𝑃  <  𝑋 ) | 
						
							| 19 | 12 13 14 15 16 17 18 | syl132anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  ∧  𝑞  ∈  𝐴  ∧  𝑞  <  𝑋 )  →  𝑃  <  𝑋 ) | 
						
							| 20 | 19 | rexlimdv3a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  →  ( ∃ 𝑞  ∈  𝐴 𝑞  <  𝑋  →  𝑃  <  𝑋 ) ) | 
						
							| 21 | 11 20 | mpd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 𝐶  1   ∧  𝑃  ≤  𝑋 ) )  →  𝑃  <  𝑋 ) |