| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cvrco.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
1cvrco.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 3 |
|
1cvrco.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 4 |
|
1cvrco.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 5 |
|
1cvrco.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 8 |
|
simpr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 9 |
1 2
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 10 |
7 9
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 11 |
1 3 4
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( 𝑋 𝐶 1 ↔ ( ⊥ ‘ 1 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) |
| 12 |
7 8 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐶 1 ↔ ( ⊥ ‘ 1 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) |
| 13 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 14 |
13 2 3
|
opoc1 |
⊢ ( 𝐾 ∈ OP → ( ⊥ ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
| 15 |
7 14
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
| 16 |
15
|
breq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( ⊥ ‘ 1 ) 𝐶 ( ⊥ ‘ 𝑋 ) ↔ ( 0. ‘ 𝐾 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) |
| 17 |
1 3
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 18 |
6 17
|
sylan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 |
18
|
biantrurd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( 0. ‘ 𝐾 ) 𝐶 ( ⊥ ‘ 𝑋 ) ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) ) |
| 20 |
12 16 19
|
3bitrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐶 1 ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) ) |
| 21 |
1 13 4 5
|
isat |
⊢ ( 𝐾 ∈ HL → ( ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ↔ ( ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) 𝐶 ( ⊥ ‘ 𝑋 ) ) ) ) |
| 23 |
20 22
|
bitr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐶 1 ↔ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) ) |