| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cvrjat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
1cvrjat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
1cvrjat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
1cvrjat.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 5 |
|
1cvrjat.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 6 |
|
1cvrjat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ¬ 𝑃 ≤ 𝑋 ) |
| 8 |
1 2 3 5 6
|
cvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
| 10 |
7 9
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝐾 ∈ HL ) |
| 12 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝐾 ∈ OP ) |
| 14 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 15 |
11
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝐾 ∈ Lat ) |
| 16 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐴 ) |
| 17 |
1 6
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐵 ) |
| 19 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 20 |
15 14 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 21 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 22 |
1 21 5
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 23 |
13 14 20 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 24 |
10 23
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 25 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 26 |
11 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝐾 ∈ AtLat ) |
| 27 |
1 21
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) ∈ 𝐵 ) |
| 28 |
13 20 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) ∈ 𝐵 ) |
| 29 |
1 21
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 30 |
13 14 29
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 31 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 32 |
31 4 21
|
opoc1 |
⊢ ( 𝐾 ∈ OP → ( ( oc ‘ 𝐾 ) ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
| 33 |
11 12 32
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ 1 ) = ( 0. ‘ 𝐾 ) ) |
| 34 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 𝑋 𝐶 1 ) |
| 35 |
1 4
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 36 |
11 12 35
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → 1 ∈ 𝐵 ) |
| 37 |
1 21 5
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) → ( 𝑋 𝐶 1 ↔ ( ( oc ‘ 𝐾 ) ‘ 1 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 38 |
13 14 36 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( 𝑋 𝐶 1 ↔ ( ( oc ‘ 𝐾 ) ‘ 1 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 39 |
34 38
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ 1 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 40 |
33 39
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( 0. ‘ 𝐾 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 41 |
1 31 5 6
|
isat |
⊢ ( 𝐾 ∈ HL → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 42 |
11 41
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 43 |
30 40 42
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ) |
| 44 |
1 2 31 5 6
|
atcvreq0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐴 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 45 |
26 28 43 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 46 |
24 45
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) = ( 0. ‘ 𝐾 ) ) |
| 47 |
46
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) ) = ( ( oc ‘ 𝐾 ) ‘ ( 0. ‘ 𝐾 ) ) ) |
| 48 |
1 21
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) ) = ( 𝑋 ∨ 𝑃 ) ) |
| 49 |
13 20 48
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑃 ) ) ) = ( 𝑋 ∨ 𝑃 ) ) |
| 50 |
31 4 21
|
opoc0 |
⊢ ( 𝐾 ∈ OP → ( ( oc ‘ 𝐾 ) ‘ ( 0. ‘ 𝐾 ) ) = 1 ) |
| 51 |
11 12 50
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 0. ‘ 𝐾 ) ) = 1 ) |
| 52 |
47 49 51
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑋 𝐶 1 ∧ ¬ 𝑃 ≤ 𝑋 ) ) → ( 𝑋 ∨ 𝑃 ) = 1 ) |