Metamath Proof Explorer


Theorem 1div0OLD

Description: Obsolete version of 1div0 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion 1div0OLD ( 1 / 0 ) = ∅

Proof

Step Hyp Ref Expression
1 df-div / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) )
2 riotaex ( 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ∈ V
3 1 2 dmmpo dom / = ( ℂ × ( ℂ ∖ { 0 } ) )
4 eqid 0 = 0
5 eldifsni ( 0 ∈ ( ℂ ∖ { 0 } ) → 0 ≠ 0 )
6 5 adantl ( ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) → 0 ≠ 0 )
7 6 necon2bi ( 0 = 0 → ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) )
8 4 7 ax-mp ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) )
9 ndmovg ( ( dom / = ( ℂ × ( ℂ ∖ { 0 } ) ) ∧ ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 1 / 0 ) = ∅ )
10 3 8 9 mp2an ( 1 / 0 ) = ∅