Metamath Proof Explorer


Theorem 1dvds

Description: 1 divides any integer. Theorem 1.1(f) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion 1dvds ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 )

Proof

Step Hyp Ref Expression
1 zcn ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ )
2 1 mulid1d ( 𝑁 ∈ ℤ → ( 𝑁 · 1 ) = 𝑁 )
3 1z 1 ∈ ℤ
4 dvds0lem ( ( ( 𝑁 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 · 1 ) = 𝑁 ) → 1 ∥ 𝑁 )
5 3 4 mp3anl2 ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 · 1 ) = 𝑁 ) → 1 ∥ 𝑁 )
6 5 anabsan ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 · 1 ) = 𝑁 ) → 1 ∥ 𝑁 )
7 2 6 mpdan ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 )