Step |
Hyp |
Ref |
Expression |
1 |
|
1egrvtxdg1.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
2 |
|
1egrvtxdg1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
3 |
|
1egrvtxdg1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
4 |
|
1egrvtxdg1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
1egrvtxdg1.n |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
6 |
|
1egrvtxdg0.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
7 |
|
1egrvtxdg0.n |
⊢ ( 𝜑 → 𝐶 ≠ 𝐷 ) |
8 |
|
1egrvtxdg0.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
9 |
1
|
adantl |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
10 |
2
|
adantl |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 𝐴 ∈ 𝑋 ) |
11 |
3
|
adantl |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 𝐵 ∈ 𝑉 ) |
12 |
8
|
adantl |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
13 |
|
preq2 |
⊢ ( 𝐷 = 𝐵 → { 𝐵 , 𝐷 } = { 𝐵 , 𝐵 } ) |
14 |
13
|
eqcoms |
⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝐷 } = { 𝐵 , 𝐵 } ) |
15 |
|
dfsn2 |
⊢ { 𝐵 } = { 𝐵 , 𝐵 } |
16 |
14 15
|
eqtr4di |
⊢ ( 𝐵 = 𝐷 → { 𝐵 , 𝐷 } = { 𝐵 } ) |
17 |
16
|
adantr |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → { 𝐵 , 𝐷 } = { 𝐵 } ) |
18 |
17
|
opeq2d |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 〈 𝐴 , { 𝐵 , 𝐷 } 〉 = 〈 𝐴 , { 𝐵 } 〉 ) |
19 |
18
|
sneqd |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } = { 〈 𝐴 , { 𝐵 } 〉 } ) |
20 |
12 19
|
eqtrd |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 } 〉 } ) |
21 |
5
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
22 |
4 21
|
jca |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐵 ) ) |
23 |
|
eldifsn |
⊢ ( 𝐶 ∈ ( 𝑉 ∖ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝑉 ∧ 𝐶 ≠ 𝐵 ) ) |
24 |
22 23
|
sylibr |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑉 ∖ { 𝐵 } ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → 𝐶 ∈ ( 𝑉 ∖ { 𝐵 } ) ) |
26 |
9 10 11 20 25
|
1loopgrvd0 |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝜑 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |
27 |
26
|
ex |
⊢ ( 𝐵 = 𝐷 → ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) ) |
28 |
|
necom |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) |
29 |
|
df-ne |
⊢ ( 𝐶 ≠ 𝐵 ↔ ¬ 𝐶 = 𝐵 ) |
30 |
28 29
|
sylbb |
⊢ ( 𝐵 ≠ 𝐶 → ¬ 𝐶 = 𝐵 ) |
31 |
5 30
|
syl |
⊢ ( 𝜑 → ¬ 𝐶 = 𝐵 ) |
32 |
7
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐶 = 𝐷 ) |
33 |
31 32
|
jca |
⊢ ( 𝜑 → ( ¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) |
35 |
|
ioran |
⊢ ( ¬ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ↔ ( ¬ 𝐶 = 𝐵 ∧ ¬ 𝐶 = 𝐷 ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ¬ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) |
37 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
38 |
8
|
rneqd |
⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
39 |
|
rnsnopg |
⊢ ( 𝐴 ∈ 𝑋 → ran { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } = { { 𝐵 , 𝐷 } } ) |
40 |
2 39
|
syl |
⊢ ( 𝜑 → ran { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } = { { 𝐵 , 𝐷 } } ) |
41 |
38 40
|
eqtrd |
⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = { { 𝐵 , 𝐷 } } ) |
42 |
37 41
|
syl5eq |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝐵 , 𝐷 } } ) |
43 |
42
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( Edg ‘ 𝐺 ) = { { 𝐵 , 𝐷 } } ) |
44 |
43
|
rexeqdv |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ↔ ∃ 𝑒 ∈ { { 𝐵 , 𝐷 } } 𝐶 ∈ 𝑒 ) ) |
45 |
|
prex |
⊢ { 𝐵 , 𝐷 } ∈ V |
46 |
|
eleq2 |
⊢ ( 𝑒 = { 𝐵 , 𝐷 } → ( 𝐶 ∈ 𝑒 ↔ 𝐶 ∈ { 𝐵 , 𝐷 } ) ) |
47 |
46
|
rexsng |
⊢ ( { 𝐵 , 𝐷 } ∈ V → ( ∃ 𝑒 ∈ { { 𝐵 , 𝐷 } } 𝐶 ∈ 𝑒 ↔ 𝐶 ∈ { 𝐵 , 𝐷 } ) ) |
48 |
45 47
|
mp1i |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ∃ 𝑒 ∈ { { 𝐵 , 𝐷 } } 𝐶 ∈ 𝑒 ↔ 𝐶 ∈ { 𝐵 , 𝐷 } ) ) |
49 |
|
elprg |
⊢ ( 𝐶 ∈ 𝑉 → ( 𝐶 ∈ { 𝐵 , 𝐷 } ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
50 |
4 49
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ { 𝐵 , 𝐷 } ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( 𝐶 ∈ { 𝐵 , 𝐷 } ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
52 |
44 48 51
|
3bitrd |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ↔ ( 𝐶 = 𝐵 ∨ 𝐶 = 𝐷 ) ) ) |
53 |
36 52
|
mtbird |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ) |
54 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
55 |
2
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐴 ∈ 𝑋 ) |
56 |
3 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
57 |
56
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
58 |
6 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐷 ∈ ( Vtx ‘ 𝐺 ) ) |
60 |
8
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐷 } 〉 } ) |
61 |
|
simpl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐵 ≠ 𝐷 ) |
62 |
54 55 57 59 60 61
|
usgr1e |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐺 ∈ USGraph ) |
63 |
4 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) |
64 |
63
|
adantl |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) |
65 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
66 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
67 |
54 65 66
|
vtxdusgr0edgnel |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐶 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ) ) |
68 |
62 64 67
|
syl2anc |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ↔ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) 𝐶 ∈ 𝑒 ) ) |
69 |
53 68
|
mpbird |
⊢ ( ( 𝐵 ≠ 𝐷 ∧ 𝜑 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |
70 |
69
|
ex |
⊢ ( 𝐵 ≠ 𝐷 → ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) ) |
71 |
27 70
|
pm2.61ine |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 0 ) |