Step |
Hyp |
Ref |
Expression |
1 |
|
cpmatsrngpmat.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
2 |
|
cpmatsrngpmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
cpmatsrngpmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
6 |
4 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
7 |
6
|
ancli |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
9 |
8
|
ad2antrl |
⊢ ( ( 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
13 |
4 10 2 11 12
|
cply1coe0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
14 |
9 13
|
syl |
⊢ ( ( 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
15 |
|
iftrue |
⊢ ( 𝑖 = 𝑗 → if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
16 |
15
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) = ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑛 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑖 = 𝑗 → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
21 |
14 20
|
mpbird |
⊢ ( ( 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
22 |
4 10
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
22
|
ancli |
⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) ) |
25 |
4 10 2 11 12
|
cply1coe0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
27 |
26
|
ad2antrl |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
28 |
|
iffalse |
⊢ ( ¬ 𝑖 = 𝑗 → if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) = ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) = ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) |
31 |
30
|
fveq1d |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) ) |
32 |
31
|
eqeq1d |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ( ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
33 |
32
|
ralbidv |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
34 |
27 33
|
mpbird |
⊢ ( ( ¬ 𝑖 = 𝑗 ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
35 |
21 34
|
pm2.61ian |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
36 |
35
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
37 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑁 ∈ Fin ) |
38 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
39 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
40 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
41 |
|
eqid |
⊢ ( 1r ‘ 𝐶 ) = ( 1r ‘ 𝐶 ) |
42 |
2 3 12 10 5 37 38 39 40 41
|
pmat1ovscd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) = if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) |
43 |
42
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) = ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ) |
44 |
43
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) ) |
45 |
44
|
eqeq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
46 |
45
|
ralbidv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
47 |
46
|
2ralbidva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( ( algSc ‘ 𝑃 ) ‘ ( 1r ‘ 𝑅 ) ) , ( ( algSc ‘ 𝑃 ) ‘ ( 0g ‘ 𝑅 ) ) ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
48 |
36 47
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
49 |
2 3
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
51 |
50 41
|
ringidcl |
⊢ ( 𝐶 ∈ Ring → ( 1r ‘ 𝐶 ) ∈ ( Base ‘ 𝐶 ) ) |
52 |
49 51
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) ∈ ( Base ‘ 𝐶 ) ) |
53 |
1 2 3 50
|
cpmatel |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 1r ‘ 𝐶 ) ∈ ( Base ‘ 𝐶 ) ) → ( ( 1r ‘ 𝐶 ) ∈ 𝑆 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
54 |
52 53
|
mpd3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 1r ‘ 𝐶 ) ∈ 𝑆 ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝑖 ( 1r ‘ 𝐶 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
55 |
48 54
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) ∈ 𝑆 ) |