Metamath Proof Explorer


Theorem 1elfz0hash

Description: 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020)

Ref Expression
Assertion 1elfz0hash ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 1 a1i ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 1 ∈ ℕ0 )
3 hashcl ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
4 3 adantr ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
5 hashge1 ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝐴 ) )
6 elfz2nn0 ( 1 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ↔ ( 1 ∈ ℕ0 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) )
7 2 4 5 6 syl3anbrc ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → 1 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) )