Metamath Proof Explorer


Theorem 1ellim

Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 1ellim ( Lim 𝐴 → 1o𝐴 )

Proof

Step Hyp Ref Expression
1 nlim0 ¬ Lim ∅
2 limeq ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) )
3 1 2 mtbiri ( 𝐴 = ∅ → ¬ Lim 𝐴 )
4 3 necon2ai ( Lim 𝐴𝐴 ≠ ∅ )
5 nlim1 ¬ Lim 1o
6 limeq ( 𝐴 = 1o → ( Lim 𝐴 ↔ Lim 1o ) )
7 5 6 mtbiri ( 𝐴 = 1o → ¬ Lim 𝐴 )
8 7 necon2ai ( Lim 𝐴𝐴 ≠ 1o )
9 limord ( Lim 𝐴 → Ord 𝐴 )
10 ord1eln01 ( Ord 𝐴 → ( 1o𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) )
11 9 10 syl ( Lim 𝐴 → ( 1o𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) )
12 4 8 11 mpbir2and ( Lim 𝐴 → 1o𝐴 )