Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 1ellim | ⊢ ( Lim 𝐴 → 1o ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 | ⊢ ¬ Lim ∅ | |
2 | limeq | ⊢ ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) ) | |
3 | 1 2 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ Lim 𝐴 ) |
4 | 3 | necon2ai | ⊢ ( Lim 𝐴 → 𝐴 ≠ ∅ ) |
5 | nlim1 | ⊢ ¬ Lim 1o | |
6 | limeq | ⊢ ( 𝐴 = 1o → ( Lim 𝐴 ↔ Lim 1o ) ) | |
7 | 5 6 | mtbiri | ⊢ ( 𝐴 = 1o → ¬ Lim 𝐴 ) |
8 | 7 | necon2ai | ⊢ ( Lim 𝐴 → 𝐴 ≠ 1o ) |
9 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
10 | ord1eln01 | ⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) ) | |
11 | 9 10 | syl | ⊢ ( Lim 𝐴 → ( 1o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) ) |
12 | 4 8 11 | mpbir2and | ⊢ ( Lim 𝐴 → 1o ∈ 𝐴 ) |