Metamath Proof Explorer


Theorem 1eluzge0

Description: 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion 1eluzge0 1 ∈ ( ℤ ‘ 0 )

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 1z 1 ∈ ℤ
3 0le1 0 ≤ 1
4 eluz2 ( 1 ∈ ( ℤ ‘ 0 ) ↔ ( 0 ∈ ℤ ∧ 1 ∈ ℤ ∧ 0 ≤ 1 ) )
5 1 2 3 4 mpbir3an 1 ∈ ( ℤ ‘ 0 )