Step |
Hyp |
Ref |
Expression |
1 |
|
1ex |
⊢ 1 ∈ V |
2 |
1
|
snid |
⊢ 1 ∈ { 1 } |
3 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
|
snssi |
⊢ ( 1 ∈ ℂ → { 1 } ⊆ ℂ ) |
6 |
4 5
|
ax-mp |
⊢ { 1 } ⊆ ℂ |
7 |
|
elsni |
⊢ ( 𝑥 ∈ { 1 } → 𝑥 = 1 ) |
8 |
|
elsni |
⊢ ( 𝑦 ∈ { 1 } → 𝑦 = 1 ) |
9 |
|
oveq12 |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = ( 1 · 1 ) ) |
10 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
11 |
9 10
|
eqtrdi |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 1 ) → ( 𝑥 · 𝑦 ) = 1 ) |
12 |
7 8 11
|
syl2an |
⊢ ( ( 𝑥 ∈ { 1 } ∧ 𝑦 ∈ { 1 } ) → ( 𝑥 · 𝑦 ) = 1 ) |
13 |
|
ovex |
⊢ ( 𝑥 · 𝑦 ) ∈ V |
14 |
13
|
elsn |
⊢ ( ( 𝑥 · 𝑦 ) ∈ { 1 } ↔ ( 𝑥 · 𝑦 ) = 1 ) |
15 |
12 14
|
sylibr |
⊢ ( ( 𝑥 ∈ { 1 } ∧ 𝑦 ∈ { 1 } ) → ( 𝑥 · 𝑦 ) ∈ { 1 } ) |
16 |
7
|
oveq2d |
⊢ ( 𝑥 ∈ { 1 } → ( 1 / 𝑥 ) = ( 1 / 1 ) ) |
17 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
18 |
16 17
|
eqtrdi |
⊢ ( 𝑥 ∈ { 1 } → ( 1 / 𝑥 ) = 1 ) |
19 |
|
ovex |
⊢ ( 1 / 𝑥 ) ∈ V |
20 |
19
|
elsn |
⊢ ( ( 1 / 𝑥 ) ∈ { 1 } ↔ ( 1 / 𝑥 ) = 1 ) |
21 |
18 20
|
sylibr |
⊢ ( 𝑥 ∈ { 1 } → ( 1 / 𝑥 ) ∈ { 1 } ) |
22 |
21
|
adantr |
⊢ ( ( 𝑥 ∈ { 1 } ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ { 1 } ) |
23 |
6 15 2 22
|
expcl2lem |
⊢ ( ( 1 ∈ { 1 } ∧ 1 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 1 ↑ 𝑁 ) ∈ { 1 } ) |
24 |
2 3 23
|
mp3an12 |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) ∈ { 1 } ) |
25 |
|
elsni |
⊢ ( ( 1 ↑ 𝑁 ) ∈ { 1 } → ( 1 ↑ 𝑁 ) = 1 ) |
26 |
24 25
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) |