Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
2 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
3 |
2
|
a1i |
⊢ ( ⊤ → ℂfld ∈ DivRing ) |
4 |
|
qsscn |
⊢ ℚ ⊆ ℂ |
5 |
4
|
a1i |
⊢ ( ⊤ → ℚ ⊆ ℂ ) |
6 |
|
1z |
⊢ 1 ∈ ℤ |
7 |
|
snssi |
⊢ ( 1 ∈ ℤ → { 1 } ⊆ ℤ ) |
8 |
6 7
|
ax-mp |
⊢ { 1 } ⊆ ℤ |
9 |
|
zssq |
⊢ ℤ ⊆ ℚ |
10 |
8 9
|
sstri |
⊢ { 1 } ⊆ ℚ |
11 |
10
|
a1i |
⊢ ( ⊤ → { 1 } ⊆ ℚ ) |
12 |
1 3 5 11
|
fldgenss |
⊢ ( ⊤ → ( ℂfld fldGen { 1 } ) ⊆ ( ℂfld fldGen ℚ ) ) |
13 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
14 |
13
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
15 |
13
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
16 |
|
issdrg |
⊢ ( ℚ ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) ) |
17 |
2 14 15 16
|
mpbir3an |
⊢ ℚ ∈ ( SubDRing ‘ ℂfld ) |
18 |
17
|
a1i |
⊢ ( ⊤ → ℚ ∈ ( SubDRing ‘ ℂfld ) ) |
19 |
1 3 18
|
fldgenidfld |
⊢ ( ⊤ → ( ℂfld fldGen ℚ ) = ℚ ) |
20 |
12 19
|
sseqtrd |
⊢ ( ⊤ → ( ℂfld fldGen { 1 } ) ⊆ ℚ ) |
21 |
|
elq |
⊢ ( 𝑧 ∈ ℚ ↔ ∃ 𝑝 ∈ ℤ ∃ 𝑞 ∈ ℕ 𝑧 = ( 𝑝 / 𝑞 ) ) |
22 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
23 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
24 |
11 4
|
sstrdi |
⊢ ( ⊤ → { 1 } ⊆ ℂ ) |
25 |
1 3 24
|
fldgensdrg |
⊢ ( ⊤ → ( ℂfld fldGen { 1 } ) ∈ ( SubDRing ‘ ℂfld ) ) |
26 |
25
|
mptru |
⊢ ( ℂfld fldGen { 1 } ) ∈ ( SubDRing ‘ ℂfld ) |
27 |
26
|
a1i |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → ( ℂfld fldGen { 1 } ) ∈ ( SubDRing ‘ ℂfld ) ) |
28 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
29 |
|
cnfldmulg |
⊢ ( ( 𝑝 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑝 ( .g ‘ ℂfld ) 1 ) = ( 𝑝 · 1 ) ) |
30 |
28 29
|
mpan2 |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ( .g ‘ ℂfld ) 1 ) = ( 𝑝 · 1 ) ) |
31 |
|
zre |
⊢ ( 𝑝 ∈ ℤ → 𝑝 ∈ ℝ ) |
32 |
|
ax-1rid |
⊢ ( 𝑝 ∈ ℝ → ( 𝑝 · 1 ) = 𝑝 ) |
33 |
31 32
|
syl |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 · 1 ) = 𝑝 ) |
34 |
30 33
|
eqtrd |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ( .g ‘ ℂfld ) 1 ) = 𝑝 ) |
35 |
|
issdrg |
⊢ ( ( ℂfld fldGen { 1 } ) ∈ ( SubDRing ‘ ℂfld ) ↔ ( ℂfld ∈ DivRing ∧ ( ℂfld fldGen { 1 } ) ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ( ℂfld fldGen { 1 } ) ) ∈ DivRing ) ) |
36 |
26 35
|
mpbi |
⊢ ( ℂfld ∈ DivRing ∧ ( ℂfld fldGen { 1 } ) ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ( ℂfld fldGen { 1 } ) ) ∈ DivRing ) |
37 |
36
|
simp2i |
⊢ ( ℂfld fldGen { 1 } ) ∈ ( SubRing ‘ ℂfld ) |
38 |
|
subrgsubg |
⊢ ( ( ℂfld fldGen { 1 } ) ∈ ( SubRing ‘ ℂfld ) → ( ℂfld fldGen { 1 } ) ∈ ( SubGrp ‘ ℂfld ) ) |
39 |
37 38
|
ax-mp |
⊢ ( ℂfld fldGen { 1 } ) ∈ ( SubGrp ‘ ℂfld ) |
40 |
1 3 24
|
fldgenssid |
⊢ ( ⊤ → { 1 } ⊆ ( ℂfld fldGen { 1 } ) ) |
41 |
|
1ex |
⊢ 1 ∈ V |
42 |
41
|
snss |
⊢ ( 1 ∈ ( ℂfld fldGen { 1 } ) ↔ { 1 } ⊆ ( ℂfld fldGen { 1 } ) ) |
43 |
40 42
|
sylibr |
⊢ ( ⊤ → 1 ∈ ( ℂfld fldGen { 1 } ) ) |
44 |
43
|
mptru |
⊢ 1 ∈ ( ℂfld fldGen { 1 } ) |
45 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
46 |
45
|
subgmulgcl |
⊢ ( ( ( ℂfld fldGen { 1 } ) ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑝 ∈ ℤ ∧ 1 ∈ ( ℂfld fldGen { 1 } ) ) → ( 𝑝 ( .g ‘ ℂfld ) 1 ) ∈ ( ℂfld fldGen { 1 } ) ) |
47 |
39 44 46
|
mp3an13 |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ( .g ‘ ℂfld ) 1 ) ∈ ( ℂfld fldGen { 1 } ) ) |
48 |
34 47
|
eqeltrrd |
⊢ ( 𝑝 ∈ ℤ → 𝑝 ∈ ( ℂfld fldGen { 1 } ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → 𝑝 ∈ ( ℂfld fldGen { 1 } ) ) |
50 |
48
|
ssriv |
⊢ ℤ ⊆ ( ℂfld fldGen { 1 } ) |
51 |
|
nnz |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ∈ ℤ ) |
52 |
51
|
adantl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → 𝑞 ∈ ℤ ) |
53 |
50 52
|
sselid |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → 𝑞 ∈ ( ℂfld fldGen { 1 } ) ) |
54 |
|
nnne0 |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ≠ 0 ) |
55 |
54
|
adantl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → 𝑞 ≠ 0 ) |
56 |
22 23 27 49 53 55
|
sdrgdvcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → ( 𝑝 / 𝑞 ) ∈ ( ℂfld fldGen { 1 } ) ) |
57 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑝 / 𝑞 ) → ( 𝑧 ∈ ( ℂfld fldGen { 1 } ) ↔ ( 𝑝 / 𝑞 ) ∈ ( ℂfld fldGen { 1 } ) ) ) |
58 |
56 57
|
syl5ibrcom |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ ) → ( 𝑧 = ( 𝑝 / 𝑞 ) → 𝑧 ∈ ( ℂfld fldGen { 1 } ) ) ) |
59 |
58
|
rexlimivv |
⊢ ( ∃ 𝑝 ∈ ℤ ∃ 𝑞 ∈ ℕ 𝑧 = ( 𝑝 / 𝑞 ) → 𝑧 ∈ ( ℂfld fldGen { 1 } ) ) |
60 |
21 59
|
sylbi |
⊢ ( 𝑧 ∈ ℚ → 𝑧 ∈ ( ℂfld fldGen { 1 } ) ) |
61 |
60
|
ssriv |
⊢ ℚ ⊆ ( ℂfld fldGen { 1 } ) |
62 |
61
|
a1i |
⊢ ( ⊤ → ℚ ⊆ ( ℂfld fldGen { 1 } ) ) |
63 |
20 62
|
eqssd |
⊢ ( ⊤ → ( ℂfld fldGen { 1 } ) = ℚ ) |
64 |
63
|
mptru |
⊢ ( ℂfld fldGen { 1 } ) = ℚ |