| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 2 |
|
fzopredsuc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( ( { 0 } ∪ ( ( 0 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
| 3 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 4 |
3
|
oveq1i |
⊢ ( ( 0 + 1 ) ..^ 𝑁 ) = ( 1 ..^ 𝑁 ) |
| 5 |
4
|
uneq2i |
⊢ ( { 0 } ∪ ( ( 0 + 1 ) ..^ 𝑁 ) ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) |
| 6 |
5
|
uneq1i |
⊢ ( ( { 0 } ∪ ( ( 0 + 1 ) ..^ 𝑁 ) ) ∪ { 𝑁 } ) = ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) |
| 7 |
2 6
|
eqtrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |
| 8 |
1 7
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ∪ { 𝑁 } ) ) |