Database
GRAPH THEORY
Undirected graphs
Vertex degree
1hegrvtxdg1r
Metamath Proof Explorer
Description: The vertex degree of a graph with one hyperedge, case 3: an edge from
some other vertex to the given vertex contributes one to the vertex's
degree. (Contributed by Mario Carneiro , 12-Mar-2015) (Revised by Alexander van der Vekens , 22-Dec-2017) (Revised by AV , 23-Feb-2021)
Ref
Expression
Hypotheses
1hegrvtxdg1.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 )
1hegrvtxdg1.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 )
1hegrvtxdg1.c
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 )
1hegrvtxdg1.n
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 )
1hegrvtxdg1.x
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 )
1hegrvtxdg1.i
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } )
1hegrvtxdg1.e
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 )
1hegrvtxdg1.v
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 )
Assertion
1hegrvtxdg1r
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 1 )
Proof
Step
Hyp
Ref
Expression
1
1hegrvtxdg1.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 )
2
1hegrvtxdg1.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 )
3
1hegrvtxdg1.c
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 )
4
1hegrvtxdg1.n
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 )
5
1hegrvtxdg1.x
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑉 )
6
1hegrvtxdg1.i
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , 𝐸 〉 } )
7
1hegrvtxdg1.e
⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝐸 )
8
1hegrvtxdg1.v
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 )
9
4
necomd
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 )
10
prcom
⊢ { 𝐶 , 𝐵 } = { 𝐵 , 𝐶 }
11
10 7
eqsstrid
⊢ ( 𝜑 → { 𝐶 , 𝐵 } ⊆ 𝐸 )
12
1 3 2 9 5 6 11 8
1hegrvtxdg1
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐶 ) = 1 )