Metamath Proof Explorer


Theorem 1idpr

Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of Gleason p. 124. (Contributed by NM, 2-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion 1idpr ( 𝐴P → ( 𝐴 ·P 1P ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ∃ 𝑔 ( 𝑔 ∈ 1P𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
2 elprnq ( ( 𝐴P𝑓𝐴 ) → 𝑓Q )
3 breq1 ( 𝑥 = ( 𝑓 ·Q 𝑔 ) → ( 𝑥 <Q 𝑓 ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) )
4 df-1p 1P = { 𝑔𝑔 <Q 1Q }
5 4 abeq2i ( 𝑔 ∈ 1P𝑔 <Q 1Q )
6 ltmnq ( 𝑓Q → ( 𝑔 <Q 1Q ↔ ( 𝑓 ·Q 𝑔 ) <Q ( 𝑓 ·Q 1Q ) ) )
7 mulidnq ( 𝑓Q → ( 𝑓 ·Q 1Q ) = 𝑓 )
8 7 breq2d ( 𝑓Q → ( ( 𝑓 ·Q 𝑔 ) <Q ( 𝑓 ·Q 1Q ) ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) )
9 6 8 bitrd ( 𝑓Q → ( 𝑔 <Q 1Q ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) )
10 5 9 bitr2id ( 𝑓Q → ( ( 𝑓 ·Q 𝑔 ) <Q 𝑓𝑔 ∈ 1P ) )
11 3 10 sylan9bbr ( ( 𝑓Q𝑥 = ( 𝑓 ·Q 𝑔 ) ) → ( 𝑥 <Q 𝑓𝑔 ∈ 1P ) )
12 2 11 sylan ( ( ( 𝐴P𝑓𝐴 ) ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → ( 𝑥 <Q 𝑓𝑔 ∈ 1P ) )
13 12 ex ( ( 𝐴P𝑓𝐴 ) → ( 𝑥 = ( 𝑓 ·Q 𝑔 ) → ( 𝑥 <Q 𝑓𝑔 ∈ 1P ) ) )
14 13 pm5.32rd ( ( 𝐴P𝑓𝐴 ) → ( ( 𝑥 <Q 𝑓𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑔 ∈ 1P𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
15 14 exbidv ( ( 𝐴P𝑓𝐴 ) → ( ∃ 𝑔 ( 𝑥 <Q 𝑓𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ 1P𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
16 19.42v ( ∃ 𝑔 ( 𝑥 <Q 𝑓𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
17 15 16 bitr3di ( ( 𝐴P𝑓𝐴 ) → ( ∃ 𝑔 ( 𝑔 ∈ 1P𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
18 1 17 syl5bb ( ( 𝐴P𝑓𝐴 ) → ( ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
19 18 rexbidva ( 𝐴P → ( ∃ 𝑓𝐴𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ∃ 𝑓𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
20 1pr 1PP
21 df-mp ·P = ( 𝑦P , 𝑧P ↦ { 𝑤 ∣ ∃ 𝑢𝑦𝑣𝑧 𝑤 = ( 𝑢 ·Q 𝑣 ) } )
22 mulclnq ( ( 𝑢Q𝑣Q ) → ( 𝑢 ·Q 𝑣 ) ∈ Q )
23 21 22 genpelv ( ( 𝐴P ∧ 1PP ) → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ ∃ 𝑓𝐴𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
24 20 23 mpan2 ( 𝐴P → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ ∃ 𝑓𝐴𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
25 prnmax ( ( 𝐴P𝑥𝐴 ) → ∃ 𝑓𝐴 𝑥 <Q 𝑓 )
26 ltrelnq <Q ⊆ ( Q × Q )
27 26 brel ( 𝑥 <Q 𝑓 → ( 𝑥Q𝑓Q ) )
28 vex 𝑓 ∈ V
29 vex 𝑥 ∈ V
30 fvex ( *Q𝑓 ) ∈ V
31 mulcomnq ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 )
32 mulassnq ( ( 𝑦 ·Q 𝑧 ) ·Q 𝑤 ) = ( 𝑦 ·Q ( 𝑧 ·Q 𝑤 ) )
33 28 29 30 31 32 caov12 ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) = ( 𝑥 ·Q ( 𝑓 ·Q ( *Q𝑓 ) ) )
34 recidnq ( 𝑓Q → ( 𝑓 ·Q ( *Q𝑓 ) ) = 1Q )
35 34 oveq2d ( 𝑓Q → ( 𝑥 ·Q ( 𝑓 ·Q ( *Q𝑓 ) ) ) = ( 𝑥 ·Q 1Q ) )
36 33 35 eqtrid ( 𝑓Q → ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) = ( 𝑥 ·Q 1Q ) )
37 mulidnq ( 𝑥Q → ( 𝑥 ·Q 1Q ) = 𝑥 )
38 36 37 sylan9eqr ( ( 𝑥Q𝑓Q ) → ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) = 𝑥 )
39 38 eqcomd ( ( 𝑥Q𝑓Q ) → 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) )
40 ovex ( 𝑥 ·Q ( *Q𝑓 ) ) ∈ V
41 oveq2 ( 𝑔 = ( 𝑥 ·Q ( *Q𝑓 ) ) → ( 𝑓 ·Q 𝑔 ) = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) )
42 41 eqeq2d ( 𝑔 = ( 𝑥 ·Q ( *Q𝑓 ) ) → ( 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) ) )
43 40 42 spcev ( 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q𝑓 ) ) ) → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) )
44 27 39 43 3syl ( 𝑥 <Q 𝑓 → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) )
45 44 a1i ( 𝑓𝐴 → ( 𝑥 <Q 𝑓 → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
46 45 ancld ( 𝑓𝐴 → ( 𝑥 <Q 𝑓 → ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
47 46 reximia ( ∃ 𝑓𝐴 𝑥 <Q 𝑓 → ∃ 𝑓𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
48 25 47 syl ( ( 𝐴P𝑥𝐴 ) → ∃ 𝑓𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) )
49 48 ex ( 𝐴P → ( 𝑥𝐴 → ∃ 𝑓𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
50 prcdnq ( ( 𝐴P𝑓𝐴 ) → ( 𝑥 <Q 𝑓𝑥𝐴 ) )
51 50 adantrd ( ( 𝐴P𝑓𝐴 ) → ( ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → 𝑥𝐴 ) )
52 51 rexlimdva ( 𝐴P → ( ∃ 𝑓𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → 𝑥𝐴 ) )
53 49 52 impbid ( 𝐴P → ( 𝑥𝐴 ↔ ∃ 𝑓𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) )
54 19 24 53 3bitr4d ( 𝐴P → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ 𝑥𝐴 ) )
55 54 eqrdv ( 𝐴P → ( 𝐴 ·P 1P ) = 𝐴 )