Step |
Hyp |
Ref |
Expression |
1 |
|
df-rex |
⊢ ( ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ∃ 𝑔 ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
2 |
|
elprnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ Q ) |
3 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑓 ·Q 𝑔 ) → ( 𝑥 <Q 𝑓 ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) ) |
4 |
|
df-1p |
⊢ 1P = { 𝑔 ∣ 𝑔 <Q 1Q } |
5 |
4
|
abeq2i |
⊢ ( 𝑔 ∈ 1P ↔ 𝑔 <Q 1Q ) |
6 |
|
ltmnq |
⊢ ( 𝑓 ∈ Q → ( 𝑔 <Q 1Q ↔ ( 𝑓 ·Q 𝑔 ) <Q ( 𝑓 ·Q 1Q ) ) ) |
7 |
|
mulidnq |
⊢ ( 𝑓 ∈ Q → ( 𝑓 ·Q 1Q ) = 𝑓 ) |
8 |
7
|
breq2d |
⊢ ( 𝑓 ∈ Q → ( ( 𝑓 ·Q 𝑔 ) <Q ( 𝑓 ·Q 1Q ) ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) ) |
9 |
6 8
|
bitrd |
⊢ ( 𝑓 ∈ Q → ( 𝑔 <Q 1Q ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) ) |
10 |
5 9
|
bitr2id |
⊢ ( 𝑓 ∈ Q → ( ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) |
11 |
3 10
|
sylan9bbr |
⊢ ( ( 𝑓 ∈ Q ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → ( 𝑥 <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) |
12 |
2 11
|
sylan |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → ( 𝑥 <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) |
13 |
12
|
ex |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( 𝑥 = ( 𝑓 ·Q 𝑔 ) → ( 𝑥 <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) ) |
14 |
13
|
pm5.32rd |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ( 𝑥 <Q 𝑓 ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
15 |
14
|
exbidv |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ∃ 𝑔 ( 𝑥 <Q 𝑓 ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
16 |
|
19.42v |
⊢ ( ∃ 𝑔 ( 𝑥 <Q 𝑓 ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
17 |
15 16
|
bitr3di |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ∃ 𝑔 ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
18 |
1 17
|
syl5bb |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
19 |
18
|
rexbidva |
⊢ ( 𝐴 ∈ P → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
20 |
|
1pr |
⊢ 1P ∈ P |
21 |
|
df-mp |
⊢ ·P = ( 𝑦 ∈ P , 𝑧 ∈ P ↦ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑦 ∃ 𝑣 ∈ 𝑧 𝑤 = ( 𝑢 ·Q 𝑣 ) } ) |
22 |
|
mulclnq |
⊢ ( ( 𝑢 ∈ Q ∧ 𝑣 ∈ Q ) → ( 𝑢 ·Q 𝑣 ) ∈ Q ) |
23 |
21 22
|
genpelv |
⊢ ( ( 𝐴 ∈ P ∧ 1P ∈ P ) → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
24 |
20 23
|
mpan2 |
⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
25 |
|
prnmax |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝐴 𝑥 <Q 𝑓 ) |
26 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
27 |
26
|
brel |
⊢ ( 𝑥 <Q 𝑓 → ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) ) |
28 |
|
vex |
⊢ 𝑓 ∈ V |
29 |
|
vex |
⊢ 𝑥 ∈ V |
30 |
|
fvex |
⊢ ( *Q ‘ 𝑓 ) ∈ V |
31 |
|
mulcomnq |
⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) |
32 |
|
mulassnq |
⊢ ( ( 𝑦 ·Q 𝑧 ) ·Q 𝑤 ) = ( 𝑦 ·Q ( 𝑧 ·Q 𝑤 ) ) |
33 |
28 29 30 31 32
|
caov12 |
⊢ ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) = ( 𝑥 ·Q ( 𝑓 ·Q ( *Q ‘ 𝑓 ) ) ) |
34 |
|
recidnq |
⊢ ( 𝑓 ∈ Q → ( 𝑓 ·Q ( *Q ‘ 𝑓 ) ) = 1Q ) |
35 |
34
|
oveq2d |
⊢ ( 𝑓 ∈ Q → ( 𝑥 ·Q ( 𝑓 ·Q ( *Q ‘ 𝑓 ) ) ) = ( 𝑥 ·Q 1Q ) ) |
36 |
33 35
|
eqtrid |
⊢ ( 𝑓 ∈ Q → ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) = ( 𝑥 ·Q 1Q ) ) |
37 |
|
mulidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) |
38 |
36 37
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) → ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) = 𝑥 ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) → 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) ) |
40 |
|
ovex |
⊢ ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ∈ V |
41 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) → ( 𝑓 ·Q 𝑔 ) = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) → ( 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) ) ) |
43 |
40 42
|
spcev |
⊢ ( 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) |
44 |
27 39 43
|
3syl |
⊢ ( 𝑥 <Q 𝑓 → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) |
45 |
44
|
a1i |
⊢ ( 𝑓 ∈ 𝐴 → ( 𝑥 <Q 𝑓 → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
46 |
45
|
ancld |
⊢ ( 𝑓 ∈ 𝐴 → ( 𝑥 <Q 𝑓 → ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
47 |
46
|
reximia |
⊢ ( ∃ 𝑓 ∈ 𝐴 𝑥 <Q 𝑓 → ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
48 |
25 47
|
syl |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
49 |
48
|
ex |
⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ 𝐴 → ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
50 |
|
prcdnq |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ 𝐴 ) ) |
51 |
50
|
adantrd |
⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → 𝑥 ∈ 𝐴 ) ) |
52 |
51
|
rexlimdva |
⊢ ( 𝐴 ∈ P → ( ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → 𝑥 ∈ 𝐴 ) ) |
53 |
49 52
|
impbid |
⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
54 |
19 24 53
|
3bitr4d |
⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ 𝑥 ∈ 𝐴 ) ) |
55 |
54
|
eqrdv |
⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 1P ) = 𝐴 ) |