Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
⊢ R = ( ( P × P ) / ~R ) |
2 |
|
oveq1 |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = ( 𝐴 ·R 1R ) ) |
3 |
|
id |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 ) |
4 |
2 3
|
eqeq12d |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R = 𝐴 → ( ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = [ 〈 𝑥 , 𝑦 〉 ] ~R ↔ ( 𝐴 ·R 1R ) = 𝐴 ) ) |
5 |
|
df-1r |
⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R |
6 |
5
|
oveq2i |
⊢ ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) |
7 |
|
1pr |
⊢ 1P ∈ P |
8 |
|
addclpr |
⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) |
9 |
7 7 8
|
mp2an |
⊢ ( 1P +P 1P ) ∈ P |
10 |
|
mulsrpr |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ) |
11 |
9 7 10
|
mpanr12 |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ) |
12 |
|
distrpr |
⊢ ( 𝑥 ·P ( 1P +P 1P ) ) = ( ( 𝑥 ·P 1P ) +P ( 𝑥 ·P 1P ) ) |
13 |
|
1idpr |
⊢ ( 𝑥 ∈ P → ( 𝑥 ·P 1P ) = 𝑥 ) |
14 |
13
|
oveq1d |
⊢ ( 𝑥 ∈ P → ( ( 𝑥 ·P 1P ) +P ( 𝑥 ·P 1P ) ) = ( 𝑥 +P ( 𝑥 ·P 1P ) ) ) |
15 |
12 14
|
eqtr2id |
⊢ ( 𝑥 ∈ P → ( 𝑥 +P ( 𝑥 ·P 1P ) ) = ( 𝑥 ·P ( 1P +P 1P ) ) ) |
16 |
|
distrpr |
⊢ ( 𝑦 ·P ( 1P +P 1P ) ) = ( ( 𝑦 ·P 1P ) +P ( 𝑦 ·P 1P ) ) |
17 |
|
1idpr |
⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) = 𝑦 ) |
18 |
17
|
oveq1d |
⊢ ( 𝑦 ∈ P → ( ( 𝑦 ·P 1P ) +P ( 𝑦 ·P 1P ) ) = ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) |
19 |
16 18
|
eqtrid |
⊢ ( 𝑦 ∈ P → ( 𝑦 ·P ( 1P +P 1P ) ) = ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) |
20 |
15 19
|
oveqan12d |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 +P ( 𝑥 ·P 1P ) ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) = ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) ) |
21 |
|
addasspr |
⊢ ( ( 𝑥 +P ( 𝑥 ·P 1P ) ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) = ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) |
22 |
|
ovex |
⊢ ( 𝑥 ·P ( 1P +P 1P ) ) ∈ V |
23 |
|
vex |
⊢ 𝑦 ∈ V |
24 |
|
ovex |
⊢ ( 𝑦 ·P 1P ) ∈ V |
25 |
|
addcompr |
⊢ ( 𝑧 +P 𝑤 ) = ( 𝑤 +P 𝑧 ) |
26 |
|
addasspr |
⊢ ( ( 𝑧 +P 𝑤 ) +P 𝑣 ) = ( 𝑧 +P ( 𝑤 +P 𝑣 ) ) |
27 |
22 23 24 25 26
|
caov12 |
⊢ ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 +P ( 𝑦 ·P 1P ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) |
28 |
20 21 27
|
3eqtr3g |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) |
29 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ ( 1P +P 1P ) ∈ P ) → ( 𝑥 ·P ( 1P +P 1P ) ) ∈ P ) |
30 |
9 29
|
mpan2 |
⊢ ( 𝑥 ∈ P → ( 𝑥 ·P ( 1P +P 1P ) ) ∈ P ) |
31 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ 1P ∈ P ) → ( 𝑦 ·P 1P ) ∈ P ) |
32 |
7 31
|
mpan2 |
⊢ ( 𝑦 ∈ P → ( 𝑦 ·P 1P ) ∈ P ) |
33 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P ( 1P +P 1P ) ) ∈ P ∧ ( 𝑦 ·P 1P ) ∈ P ) → ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ) |
34 |
30 32 33
|
syl2an |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ) |
35 |
|
mulclpr |
⊢ ( ( 𝑥 ∈ P ∧ 1P ∈ P ) → ( 𝑥 ·P 1P ) ∈ P ) |
36 |
7 35
|
mpan2 |
⊢ ( 𝑥 ∈ P → ( 𝑥 ·P 1P ) ∈ P ) |
37 |
|
mulclpr |
⊢ ( ( 𝑦 ∈ P ∧ ( 1P +P 1P ) ∈ P ) → ( 𝑦 ·P ( 1P +P 1P ) ) ∈ P ) |
38 |
9 37
|
mpan2 |
⊢ ( 𝑦 ∈ P → ( 𝑦 ·P ( 1P +P 1P ) ) ∈ P ) |
39 |
|
addclpr |
⊢ ( ( ( 𝑥 ·P 1P ) ∈ P ∧ ( 𝑦 ·P ( 1P +P 1P ) ) ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) |
40 |
36 38 39
|
syl2an |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) |
41 |
34 40
|
anim12i |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) ) |
42 |
|
enreceq |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ∈ P ∧ ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ↔ ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) ) |
43 |
41 42
|
syldan |
⊢ ( ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ↔ ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) ) |
44 |
43
|
anidms |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ↔ ( 𝑥 +P ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) ) = ( 𝑦 +P ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) ) ) ) |
45 |
28 44
|
mpbird |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → [ 〈 𝑥 , 𝑦 〉 ] ~R = [ 〈 ( ( 𝑥 ·P ( 1P +P 1P ) ) +P ( 𝑦 ·P 1P ) ) , ( ( 𝑥 ·P 1P ) +P ( 𝑦 ·P ( 1P +P 1P ) ) ) 〉 ] ~R ) |
46 |
11 45
|
eqtr4d |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ) = [ 〈 𝑥 , 𝑦 〉 ] ~R ) |
47 |
6 46
|
eqtrid |
⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) → ( [ 〈 𝑥 , 𝑦 〉 ] ~R ·R 1R ) = [ 〈 𝑥 , 𝑦 〉 ] ~R ) |
48 |
1 4 47
|
ecoptocl |
⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 1R ) = 𝐴 ) |