Metamath Proof Explorer


Theorem 1idssfct

Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion 1idssfct ( 𝑁 ∈ ℕ → { 1 , 𝑁 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
3 1dvds ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 )
4 2 3 syl ( 𝑁 ∈ ℕ → 1 ∥ 𝑁 )
5 breq1 ( 𝑛 = 1 → ( 𝑛𝑁 ↔ 1 ∥ 𝑁 ) )
6 5 elrab ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ↔ ( 1 ∈ ℕ ∧ 1 ∥ 𝑁 ) )
7 6 biimpri ( ( 1 ∈ ℕ ∧ 1 ∥ 𝑁 ) → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )
8 1 4 7 sylancr ( 𝑁 ∈ ℕ → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )
9 iddvds ( 𝑁 ∈ ℤ → 𝑁𝑁 )
10 2 9 syl ( 𝑁 ∈ ℕ → 𝑁𝑁 )
11 breq1 ( 𝑛 = 𝑁 → ( 𝑛𝑁𝑁𝑁 ) )
12 11 elrab ( 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } ↔ ( 𝑁 ∈ ℕ ∧ 𝑁𝑁 ) )
13 12 biimpri ( ( 𝑁 ∈ ℕ ∧ 𝑁𝑁 ) → 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )
14 10 13 mpdan ( 𝑁 ∈ ℕ → 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )
15 8 14 prssd ( 𝑁 ∈ ℕ → { 1 , 𝑁 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛𝑁 } )