| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							nnz | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							1dvds | 
							⊢ ( 𝑁  ∈  ℤ  →  1  ∥  𝑁 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ  →  1  ∥  𝑁 )  | 
						
						
							| 5 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑛  =  1  →  ( 𝑛  ∥  𝑁  ↔  1  ∥  𝑁 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							elrab | 
							⊢ ( 1  ∈  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 }  ↔  ( 1  ∈  ℕ  ∧  1  ∥  𝑁 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							biimpri | 
							⊢ ( ( 1  ∈  ℕ  ∧  1  ∥  𝑁 )  →  1  ∈  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 } )  | 
						
						
							| 8 | 
							
								1 4 7
							 | 
							sylancr | 
							⊢ ( 𝑁  ∈  ℕ  →  1  ∈  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 } )  | 
						
						
							| 9 | 
							
								
							 | 
							iddvds | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∥  𝑁 )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∥  𝑁 )  | 
						
						
							| 11 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ∥  𝑁  ↔  𝑁  ∥  𝑁 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							elrab | 
							⊢ ( 𝑁  ∈  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 }  ↔  ( 𝑁  ∈  ℕ  ∧  𝑁  ∥  𝑁 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							biimpri | 
							⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑁  ∥  𝑁 )  →  𝑁  ∈  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 } )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							mpdan | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 } )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							prssd | 
							⊢ ( 𝑁  ∈  ℕ  →  { 1 ,  𝑁 }  ⊆  { 𝑛  ∈  ℕ  ∣  𝑛  ∥  𝑁 } )  |