| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
⊢ 1 ∈ ℕ |
| 2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 3 |
|
1dvds |
⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ → 1 ∥ 𝑁 ) |
| 5 |
|
breq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∥ 𝑁 ↔ 1 ∥ 𝑁 ) ) |
| 6 |
5
|
elrab |
⊢ ( 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ↔ ( 1 ∈ ℕ ∧ 1 ∥ 𝑁 ) ) |
| 7 |
6
|
biimpri |
⊢ ( ( 1 ∈ ℕ ∧ 1 ∥ 𝑁 ) → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 8 |
1 4 7
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 9 |
|
iddvds |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) |
| 10 |
2 9
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∥ 𝑁 ) |
| 11 |
|
breq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∥ 𝑁 ↔ 𝑁 ∥ 𝑁 ) ) |
| 12 |
11
|
elrab |
⊢ ( 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁 ) ) |
| 13 |
12
|
biimpri |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑁 ) → 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 14 |
10 13
|
mpdan |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |
| 15 |
8 14
|
prssd |
⊢ ( 𝑁 ∈ ℕ → { 1 , 𝑁 } ⊆ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁 } ) |