Metamath Proof Explorer


Theorem 1lgs

Description: The Legendre symbol at 1 . See example 1 in ApostolNT p. 180. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Assertion 1lgs ( 𝑁 ∈ ℤ → ( 1 /L 𝑁 ) = 1 )

Proof

Step Hyp Ref Expression
1 sq1 ( 1 ↑ 2 ) = 1
2 1 oveq1i ( ( 1 ↑ 2 ) /L 𝑁 ) = ( 1 /L 𝑁 )
3 1gcd ( 𝑁 ∈ ℤ → ( 1 gcd 𝑁 ) = 1 )
4 1z 1 ∈ ℤ
5 ax-1ne0 1 ≠ 0
6 4 5 pm3.2i ( 1 ∈ ℤ ∧ 1 ≠ 0 )
7 lgssq ( ( ( 1 ∈ ℤ ∧ 1 ≠ 0 ) ∧ 𝑁 ∈ ℤ ∧ ( 1 gcd 𝑁 ) = 1 ) → ( ( 1 ↑ 2 ) /L 𝑁 ) = 1 )
8 6 7 mp3an1 ( ( 𝑁 ∈ ℤ ∧ ( 1 gcd 𝑁 ) = 1 ) → ( ( 1 ↑ 2 ) /L 𝑁 ) = 1 )
9 3 8 mpdan ( 𝑁 ∈ ℤ → ( ( 1 ↑ 2 ) /L 𝑁 ) = 1 )
10 2 9 eqtr3id ( 𝑁 ∈ ℤ → ( 1 /L 𝑁 ) = 1 )