| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1loopgruspgr.v | ⊢ ( 𝜑  →  ( Vtx ‘ 𝐺 )  =  𝑉 ) | 
						
							| 2 |  | 1loopgruspgr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | 1loopgruspgr.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑉 ) | 
						
							| 4 |  | 1loopgruspgr.i | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝑁 } 〉 } ) | 
						
							| 5 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 7 | 4 | rneqd | ⊢ ( 𝜑  →  ran  ( iEdg ‘ 𝐺 )  =  ran  { 〈 𝐴 ,  { 𝑁 } 〉 } ) | 
						
							| 8 |  | rnsnopg | ⊢ ( 𝐴  ∈  𝑋  →  ran  { 〈 𝐴 ,  { 𝑁 } 〉 }  =  { { 𝑁 } } ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ran  { 〈 𝐴 ,  { 𝑁 } 〉 }  =  { { 𝑁 } } ) | 
						
							| 10 | 6 7 9 | 3eqtrd | ⊢ ( 𝜑  →  ( Edg ‘ 𝐺 )  =  { { 𝑁 } } ) |