| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1loopgruspgr.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 2 |
|
1loopgruspgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 3 |
|
1loopgruspgr.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
| 4 |
|
1loopgruspgr.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 5 |
1 2 3 4
|
1loopgruspgr |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 6 |
|
uspgrupgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| 8 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝑁 ∈ 𝑉 ) ) |
| 9 |
3 8
|
mpbird |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 10 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 11 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 12 |
10 11
|
nbupgr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 13 |
7 9 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 14 |
1
|
difeq1d |
⊢ ( 𝜑 → ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) = ( 𝑉 ∖ { 𝑁 } ) ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ↔ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ) |
| 16 |
|
eldifsn |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁 ) ) |
| 17 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
| 19 |
17 18
|
preqsnd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( { 𝑁 , 𝑣 } = { 𝑁 } ↔ ( 𝑁 = 𝑁 ∧ 𝑣 = 𝑁 ) ) ) |
| 20 |
|
simpr |
⊢ ( ( 𝑁 = 𝑁 ∧ 𝑣 = 𝑁 ) → 𝑣 = 𝑁 ) |
| 21 |
19 20
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( { 𝑁 , 𝑣 } = { 𝑁 } → 𝑣 = 𝑁 ) ) |
| 22 |
21
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑣 ≠ 𝑁 → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 23 |
22
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑁 ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 24 |
16 23
|
biimtrid |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 25 |
15 24
|
sylbid |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) |
| 27 |
1 2 3 4
|
1loopgredg |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |
| 28 |
27
|
eleq2d |
⊢ ( 𝜑 → ( { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑁 , 𝑣 } ∈ { { 𝑁 } } ) ) |
| 29 |
|
prex |
⊢ { 𝑁 , 𝑣 } ∈ V |
| 30 |
29
|
elsn |
⊢ ( { 𝑁 , 𝑣 } ∈ { { 𝑁 } } ↔ { 𝑁 , 𝑣 } = { 𝑁 } ) |
| 31 |
28 30
|
bitrdi |
⊢ ( 𝜑 → ( { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 32 |
31
|
notbid |
⊢ ( 𝜑 → ( ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ( ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ ¬ { 𝑁 , 𝑣 } = { 𝑁 } ) ) |
| 34 |
26 33
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ) → ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 35 |
34
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 36 |
|
rabeq0 |
⊢ ( { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } = ∅ ↔ ∀ 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ¬ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( 𝜑 → { 𝑣 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑣 } ∈ ( Edg ‘ 𝐺 ) } = ∅ ) |
| 38 |
13 37
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝑁 ) = ∅ ) |