| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1loopgruspgr.v | ⊢ ( 𝜑  →  ( Vtx ‘ 𝐺 )  =  𝑉 ) | 
						
							| 2 |  | 1loopgruspgr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 3 |  | 1loopgruspgr.n | ⊢ ( 𝜑  →  𝑁  ∈  𝑉 ) | 
						
							| 4 |  | 1loopgruspgr.i | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝑁 } 〉 } ) | 
						
							| 5 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 6 | 3 1 | eleqtrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 |  | dfsn2 | ⊢ { 𝑁 }  =  { 𝑁 ,  𝑁 } | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  { 𝑁 }  =  { 𝑁 ,  𝑁 } ) | 
						
							| 9 | 8 | opeq2d | ⊢ ( 𝜑  →  〈 𝐴 ,  { 𝑁 } 〉  =  〈 𝐴 ,  { 𝑁 ,  𝑁 } 〉 ) | 
						
							| 10 | 9 | sneqd | ⊢ ( 𝜑  →  { 〈 𝐴 ,  { 𝑁 } 〉 }  =  { 〈 𝐴 ,  { 𝑁 ,  𝑁 } 〉 } ) | 
						
							| 11 | 4 10 | eqtrd | ⊢ ( 𝜑  →  ( iEdg ‘ 𝐺 )  =  { 〈 𝐴 ,  { 𝑁 ,  𝑁 } 〉 } ) | 
						
							| 12 | 5 2 6 6 11 | uspgr1e | ⊢ ( 𝜑  →  𝐺  ∈  USPGraph ) |