Metamath Proof Explorer


Theorem 1loopgruspgr

Description: A graph with one edge which is a loop is a simple pseudograph (see also uspgr1v1eop ). (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 )
1loopgruspgr.a ( 𝜑𝐴𝑋 )
1loopgruspgr.n ( 𝜑𝑁𝑉 )
1loopgruspgr.i ( 𝜑 → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , { 𝑁 } ⟩ } )
Assertion 1loopgruspgr ( 𝜑𝐺 ∈ USPGraph )

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 )
2 1loopgruspgr.a ( 𝜑𝐴𝑋 )
3 1loopgruspgr.n ( 𝜑𝑁𝑉 )
4 1loopgruspgr.i ( 𝜑 → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , { 𝑁 } ⟩ } )
5 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
6 3 1 eleqtrrd ( 𝜑𝑁 ∈ ( Vtx ‘ 𝐺 ) )
7 dfsn2 { 𝑁 } = { 𝑁 , 𝑁 }
8 7 a1i ( 𝜑 → { 𝑁 } = { 𝑁 , 𝑁 } )
9 8 opeq2d ( 𝜑 → ⟨ 𝐴 , { 𝑁 } ⟩ = ⟨ 𝐴 , { 𝑁 , 𝑁 } ⟩ )
10 9 sneqd ( 𝜑 → { ⟨ 𝐴 , { 𝑁 } ⟩ } = { ⟨ 𝐴 , { 𝑁 , 𝑁 } ⟩ } )
11 4 10 eqtrd ( 𝜑 → ( iEdg ‘ 𝐺 ) = { ⟨ 𝐴 , { 𝑁 , 𝑁 } ⟩ } )
12 5 2 6 6 11 uspgr1e ( 𝜑𝐺 ∈ USPGraph )