Step |
Hyp |
Ref |
Expression |
1 |
|
1loopgruspgr.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
2 |
|
1loopgruspgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
3 |
|
1loopgruspgr.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
4 |
|
1loopgruspgr.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
5 |
|
1loopgrvd0.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) |
6 |
5
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ { 𝑁 } ) |
7 |
|
snex |
⊢ { 𝑁 } ∈ V |
8 |
|
fvsng |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ { 𝑁 } ∈ V ) → ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) = { 𝑁 } ) |
9 |
2 7 8
|
sylancl |
⊢ ( 𝜑 → ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) = { 𝑁 } ) |
10 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ↔ 𝐾 ∈ { 𝑁 } ) ) |
11 |
6 10
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) |
12 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝑁 } 〉 } ) |
13 |
|
dmsnopg |
⊢ ( { 𝑁 } ∈ V → dom { 〈 𝐴 , { 𝑁 } 〉 } = { 𝐴 } ) |
14 |
7 13
|
mp1i |
⊢ ( 𝜑 → dom { 〈 𝐴 , { 𝑁 } 〉 } = { 𝐴 } ) |
15 |
12 14
|
eqtrd |
⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = { 𝐴 } ) |
16 |
4
|
fveq1d |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ) ) |
18 |
15 17
|
rexeqbidv |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ { 𝐴 } 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑖 = 𝐴 → ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) = ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝑖 = 𝐴 → ( 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
21 |
20
|
rexsng |
⊢ ( 𝐴 ∈ 𝑋 → ( ∃ 𝑖 ∈ { 𝐴 } 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ { 𝐴 } 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
23 |
18 22
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ↔ 𝐾 ∈ ( { 〈 𝐴 , { 𝑁 } 〉 } ‘ 𝐴 ) ) ) |
24 |
11 23
|
mtbird |
⊢ ( 𝜑 → ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
25 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) |
26 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝐾 ∈ 𝑉 ) ) |
27 |
25 26
|
mpbird |
⊢ ( 𝜑 → 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) |
28 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
29 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
30 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
31 |
28 29 30
|
vtxd0nedgb |
⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
32 |
27 31
|
syl |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ↔ ¬ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝐾 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
33 |
24 32
|
mpbird |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝐾 ) = 0 ) |