| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1loopgruspgr.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 2 |
|
1loopgruspgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 3 |
|
1loopgruspgr.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
| 4 |
|
1loopgruspgr.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 5 |
1 2 3 4
|
1loopgruspgr |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |
| 6 |
|
uspgrushgr |
⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ USHGraph ) |
| 8 |
3 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 9 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 10 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 11 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
| 12 |
9 10 11
|
vtxdushgrfvedg |
⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) ) ) |
| 13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) ) ) |
| 14 |
|
snex |
⊢ { 𝑁 } ∈ V |
| 15 |
|
sneq |
⊢ ( 𝑎 = { 𝑁 } → { 𝑎 } = { { 𝑁 } } ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑎 = { 𝑁 } → ( { { 𝑁 } } = { 𝑎 } ↔ { { 𝑁 } } = { { 𝑁 } } ) ) |
| 17 |
|
eqid |
⊢ { { 𝑁 } } = { { 𝑁 } } |
| 18 |
14 16 17
|
ceqsexv2d |
⊢ ∃ 𝑎 { { 𝑁 } } = { 𝑎 } |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ∃ 𝑎 { { 𝑁 } } = { 𝑎 } ) |
| 20 |
|
snidg |
⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ { 𝑁 } ) |
| 21 |
3 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑁 } ) |
| 22 |
21
|
iftrued |
⊢ ( 𝜑 → if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { { 𝑁 } } ) |
| 23 |
22
|
eqeq1d |
⊢ ( 𝜑 → ( if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ { { 𝑁 } } = { 𝑎 } ) ) |
| 24 |
23
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑎 if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ ∃ 𝑎 { { 𝑁 } } = { 𝑎 } ) ) |
| 25 |
19 24
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑎 if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) |
| 26 |
1 2 3 4
|
1loopgredg |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |
| 27 |
26
|
rabeqdv |
⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑒 ∈ { { 𝑁 } } ∣ 𝑁 ∈ 𝑒 } ) |
| 28 |
|
eleq2 |
⊢ ( 𝑒 = { 𝑁 } → ( 𝑁 ∈ 𝑒 ↔ 𝑁 ∈ { 𝑁 } ) ) |
| 29 |
28
|
rabsnif |
⊢ { 𝑒 ∈ { { 𝑁 } } ∣ 𝑁 ∈ 𝑒 } = if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) |
| 30 |
27 29
|
eqtrdi |
⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) ) |
| 31 |
30
|
eqeq1d |
⊢ ( 𝜑 → ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ↔ if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 32 |
31
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ↔ ∃ 𝑎 if ( 𝑁 ∈ { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 33 |
25 32
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ) |
| 34 |
|
fvex |
⊢ ( Edg ‘ 𝐺 ) ∈ V |
| 35 |
34
|
rabex |
⊢ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ∈ V |
| 36 |
|
hash1snb |
⊢ ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ∈ V → ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ) ) |
| 37 |
35 36
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } = { 𝑎 } ) |
| 38 |
33 37
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) = 1 ) |
| 39 |
|
eqid |
⊢ { 𝑁 } = { 𝑁 } |
| 40 |
39
|
iftruei |
⊢ if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { { 𝑁 } } |
| 41 |
40
|
eqeq1i |
⊢ ( if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ { { 𝑁 } } = { 𝑎 } ) |
| 42 |
41
|
exbii |
⊢ ( ∃ 𝑎 if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ↔ ∃ 𝑎 { { 𝑁 } } = { 𝑎 } ) |
| 43 |
19 42
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑎 if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) |
| 44 |
26
|
rabeqdv |
⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑒 ∈ { { 𝑁 } } ∣ 𝑒 = { 𝑁 } } ) |
| 45 |
|
eqeq1 |
⊢ ( 𝑒 = { 𝑁 } → ( 𝑒 = { 𝑁 } ↔ { 𝑁 } = { 𝑁 } ) ) |
| 46 |
45
|
rabsnif |
⊢ { 𝑒 ∈ { { 𝑁 } } ∣ 𝑒 = { 𝑁 } } = if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) |
| 47 |
44 46
|
eqtrdi |
⊢ ( 𝜑 → { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) ) |
| 48 |
47
|
eqeq1d |
⊢ ( 𝜑 → ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ↔ if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 49 |
48
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ↔ ∃ 𝑎 if ( { 𝑁 } = { 𝑁 } , { { 𝑁 } } , ∅ ) = { 𝑎 } ) ) |
| 50 |
43 49
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ) |
| 51 |
34
|
rabex |
⊢ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ∈ V |
| 52 |
|
hash1snb |
⊢ ( { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ∈ V → ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ) ) |
| 53 |
51 52
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) = 1 ↔ ∃ 𝑎 { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } = { 𝑎 } ) |
| 54 |
50 53
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) = 1 ) |
| 55 |
38 54
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑁 ∈ 𝑒 } ) +𝑒 ( ♯ ‘ { 𝑒 ∈ ( Edg ‘ 𝐺 ) ∣ 𝑒 = { 𝑁 } } ) ) = ( 1 +𝑒 1 ) ) |
| 56 |
|
1re |
⊢ 1 ∈ ℝ |
| 57 |
|
rexadd |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 +𝑒 1 ) = ( 1 + 1 ) ) |
| 58 |
56 56 57
|
mp2an |
⊢ ( 1 +𝑒 1 ) = ( 1 + 1 ) |
| 59 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 60 |
58 59
|
eqtri |
⊢ ( 1 +𝑒 1 ) = 2 |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ( 1 +𝑒 1 ) = 2 ) |
| 62 |
13 55 61
|
3eqtrd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = 2 ) |