Metamath Proof Explorer


Theorem 1lt10

Description: 1 is less than 10. (Contributed by NM, 7-Nov-2012) (Revised by Mario Carneiro, 9-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 1lt10 1 < 1 0

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt10 2 < 1 0
3 1re 1 ∈ ℝ
4 2re 2 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 2 ∧ 2 < 1 0 ) → 1 < 1 0 )
7 1 2 6 mp2an 1 < 1 0