Step |
Hyp |
Ref |
Expression |
1 |
|
1lt2pi |
⊢ 1o <N ( 1o +N 1o ) |
2 |
|
1pi |
⊢ 1o ∈ N |
3 |
|
mulidpi |
⊢ ( 1o ∈ N → ( 1o ·N 1o ) = 1o ) |
4 |
2 3
|
ax-mp |
⊢ ( 1o ·N 1o ) = 1o |
5 |
|
addclpi |
⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) ∈ N ) |
6 |
2 2 5
|
mp2an |
⊢ ( 1o +N 1o ) ∈ N |
7 |
|
mulidpi |
⊢ ( ( 1o +N 1o ) ∈ N → ( ( 1o +N 1o ) ·N 1o ) = ( 1o +N 1o ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ( 1o +N 1o ) ·N 1o ) = ( 1o +N 1o ) |
9 |
1 4 8
|
3brtr4i |
⊢ ( 1o ·N 1o ) <N ( ( 1o +N 1o ) ·N 1o ) |
10 |
|
ordpipq |
⊢ ( 〈 1o , 1o 〉 <pQ 〈 ( 1o +N 1o ) , 1o 〉 ↔ ( 1o ·N 1o ) <N ( ( 1o +N 1o ) ·N 1o ) ) |
11 |
9 10
|
mpbir |
⊢ 〈 1o , 1o 〉 <pQ 〈 ( 1o +N 1o ) , 1o 〉 |
12 |
|
df-1nq |
⊢ 1Q = 〈 1o , 1o 〉 |
13 |
12 12
|
oveq12i |
⊢ ( 1Q +pQ 1Q ) = ( 〈 1o , 1o 〉 +pQ 〈 1o , 1o 〉 ) |
14 |
|
addpipq |
⊢ ( ( ( 1o ∈ N ∧ 1o ∈ N ) ∧ ( 1o ∈ N ∧ 1o ∈ N ) ) → ( 〈 1o , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 ) |
15 |
2 2 2 2 14
|
mp4an |
⊢ ( 〈 1o , 1o 〉 +pQ 〈 1o , 1o 〉 ) = 〈 ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 |
16 |
4 4
|
oveq12i |
⊢ ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) = ( 1o +N 1o ) |
17 |
16 4
|
opeq12i |
⊢ 〈 ( ( 1o ·N 1o ) +N ( 1o ·N 1o ) ) , ( 1o ·N 1o ) 〉 = 〈 ( 1o +N 1o ) , 1o 〉 |
18 |
13 15 17
|
3eqtri |
⊢ ( 1Q +pQ 1Q ) = 〈 ( 1o +N 1o ) , 1o 〉 |
19 |
11 12 18
|
3brtr4i |
⊢ 1Q <pQ ( 1Q +pQ 1Q ) |
20 |
|
lterpq |
⊢ ( 1Q <pQ ( 1Q +pQ 1Q ) ↔ ( [Q] ‘ 1Q ) <Q ( [Q] ‘ ( 1Q +pQ 1Q ) ) ) |
21 |
19 20
|
mpbi |
⊢ ( [Q] ‘ 1Q ) <Q ( [Q] ‘ ( 1Q +pQ 1Q ) ) |
22 |
|
1nq |
⊢ 1Q ∈ Q |
23 |
|
nqerid |
⊢ ( 1Q ∈ Q → ( [Q] ‘ 1Q ) = 1Q ) |
24 |
22 23
|
ax-mp |
⊢ ( [Q] ‘ 1Q ) = 1Q |
25 |
24
|
eqcomi |
⊢ 1Q = ( [Q] ‘ 1Q ) |
26 |
|
addpqnq |
⊢ ( ( 1Q ∈ Q ∧ 1Q ∈ Q ) → ( 1Q +Q 1Q ) = ( [Q] ‘ ( 1Q +pQ 1Q ) ) ) |
27 |
22 22 26
|
mp2an |
⊢ ( 1Q +Q 1Q ) = ( [Q] ‘ ( 1Q +pQ 1Q ) ) |
28 |
21 25 27
|
3brtr4i |
⊢ 1Q <Q ( 1Q +Q 1Q ) |