| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1onn |
⊢ 1o ∈ ω |
| 2 |
|
nna0 |
⊢ ( 1o ∈ ω → ( 1o +o ∅ ) = 1o ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 1o +o ∅ ) = 1o |
| 4 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 5 |
|
peano1 |
⊢ ∅ ∈ ω |
| 6 |
|
nnaord |
⊢ ( ( ∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω ) → ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) ) |
| 7 |
5 1 1 6
|
mp3an |
⊢ ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) |
| 8 |
4 7
|
mpbi |
⊢ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) |
| 9 |
3 8
|
eqeltrri |
⊢ 1o ∈ ( 1o +o 1o ) |
| 10 |
|
1pi |
⊢ 1o ∈ N |
| 11 |
|
addpiord |
⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) = ( 1o +o 1o ) ) |
| 12 |
10 10 11
|
mp2an |
⊢ ( 1o +N 1o ) = ( 1o +o 1o ) |
| 13 |
9 12
|
eleqtrri |
⊢ 1o ∈ ( 1o +N 1o ) |
| 14 |
|
addclpi |
⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) ∈ N ) |
| 15 |
10 10 14
|
mp2an |
⊢ ( 1o +N 1o ) ∈ N |
| 16 |
|
ltpiord |
⊢ ( ( 1o ∈ N ∧ ( 1o +N 1o ) ∈ N ) → ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) ) |
| 17 |
10 15 16
|
mp2an |
⊢ ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) |
| 18 |
13 17
|
mpbir |
⊢ 1o <N ( 1o +N 1o ) |