Metamath Proof Explorer


Theorem 1lt2pi

Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion 1lt2pi 1o <N ( 1o +N 1o )

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 nna0 ( 1o ∈ ω → ( 1o +o ∅ ) = 1o )
3 1 2 ax-mp ( 1o +o ∅ ) = 1o
4 0lt1o ∅ ∈ 1o
5 peano1 ∅ ∈ ω
6 nnaord ( ( ∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω ) → ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) )
7 5 1 1 6 mp3an ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) )
8 4 7 mpbi ( 1o +o ∅ ) ∈ ( 1o +o 1o )
9 3 8 eqeltrri 1o ∈ ( 1o +o 1o )
10 1pi 1oN
11 addpiord ( ( 1oN ∧ 1oN ) → ( 1o +N 1o ) = ( 1o +o 1o ) )
12 10 10 11 mp2an ( 1o +N 1o ) = ( 1o +o 1o )
13 9 12 eleqtrri 1o ∈ ( 1o +N 1o )
14 addclpi ( ( 1oN ∧ 1oN ) → ( 1o +N 1o ) ∈ N )
15 10 10 14 mp2an ( 1o +N 1o ) ∈ N
16 ltpiord ( ( 1oN ∧ ( 1o +N 1o ) ∈ N ) → ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) )
17 10 15 16 mp2an ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) )
18 13 17 mpbir 1o <N ( 1o +N 1o )