| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 2 |  | nna0 | ⊢ ( 1o  ∈  ω  →  ( 1o  +o  ∅ )  =  1o ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 1o  +o  ∅ )  =  1o | 
						
							| 4 |  | 0lt1o | ⊢ ∅  ∈  1o | 
						
							| 5 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 6 |  | nnaord | ⊢ ( ( ∅  ∈  ω  ∧  1o  ∈  ω  ∧  1o  ∈  ω )  →  ( ∅  ∈  1o  ↔  ( 1o  +o  ∅ )  ∈  ( 1o  +o  1o ) ) ) | 
						
							| 7 | 5 1 1 6 | mp3an | ⊢ ( ∅  ∈  1o  ↔  ( 1o  +o  ∅ )  ∈  ( 1o  +o  1o ) ) | 
						
							| 8 | 4 7 | mpbi | ⊢ ( 1o  +o  ∅ )  ∈  ( 1o  +o  1o ) | 
						
							| 9 | 3 8 | eqeltrri | ⊢ 1o  ∈  ( 1o  +o  1o ) | 
						
							| 10 |  | 1pi | ⊢ 1o  ∈  N | 
						
							| 11 |  | addpiord | ⊢ ( ( 1o  ∈  N  ∧  1o  ∈  N )  →  ( 1o  +N  1o )  =  ( 1o  +o  1o ) ) | 
						
							| 12 | 10 10 11 | mp2an | ⊢ ( 1o  +N  1o )  =  ( 1o  +o  1o ) | 
						
							| 13 | 9 12 | eleqtrri | ⊢ 1o  ∈  ( 1o  +N  1o ) | 
						
							| 14 |  | addclpi | ⊢ ( ( 1o  ∈  N  ∧  1o  ∈  N )  →  ( 1o  +N  1o )  ∈  N ) | 
						
							| 15 | 10 10 14 | mp2an | ⊢ ( 1o  +N  1o )  ∈  N | 
						
							| 16 |  | ltpiord | ⊢ ( ( 1o  ∈  N  ∧  ( 1o  +N  1o )  ∈  N )  →  ( 1o  <N  ( 1o  +N  1o )  ↔  1o  ∈  ( 1o  +N  1o ) ) ) | 
						
							| 17 | 10 15 16 | mp2an | ⊢ ( 1o  <N  ( 1o  +N  1o )  ↔  1o  ∈  ( 1o  +N  1o ) ) | 
						
							| 18 | 13 17 | mpbir | ⊢ 1o  <N  ( 1o  +N  1o ) |