Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
⊢ 1o ∈ ω |
2 |
|
nna0 |
⊢ ( 1o ∈ ω → ( 1o +o ∅ ) = 1o ) |
3 |
1 2
|
ax-mp |
⊢ ( 1o +o ∅ ) = 1o |
4 |
|
0lt1o |
⊢ ∅ ∈ 1o |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
|
nnaord |
⊢ ( ( ∅ ∈ ω ∧ 1o ∈ ω ∧ 1o ∈ ω ) → ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) ) |
7 |
5 1 1 6
|
mp3an |
⊢ ( ∅ ∈ 1o ↔ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) ) |
8 |
4 7
|
mpbi |
⊢ ( 1o +o ∅ ) ∈ ( 1o +o 1o ) |
9 |
3 8
|
eqeltrri |
⊢ 1o ∈ ( 1o +o 1o ) |
10 |
|
1pi |
⊢ 1o ∈ N |
11 |
|
addpiord |
⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) = ( 1o +o 1o ) ) |
12 |
10 10 11
|
mp2an |
⊢ ( 1o +N 1o ) = ( 1o +o 1o ) |
13 |
9 12
|
eleqtrri |
⊢ 1o ∈ ( 1o +N 1o ) |
14 |
|
addclpi |
⊢ ( ( 1o ∈ N ∧ 1o ∈ N ) → ( 1o +N 1o ) ∈ N ) |
15 |
10 10 14
|
mp2an |
⊢ ( 1o +N 1o ) ∈ N |
16 |
|
ltpiord |
⊢ ( ( 1o ∈ N ∧ ( 1o +N 1o ) ∈ N ) → ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) ) |
17 |
10 15 16
|
mp2an |
⊢ ( 1o <N ( 1o +N 1o ) ↔ 1o ∈ ( 1o +N 1o ) ) |
18 |
13 17
|
mpbir |
⊢ 1o <N ( 1o +N 1o ) |