Metamath Proof Explorer


Theorem 1lt3

Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010)

Ref Expression
Assertion 1lt3 1 < 3

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt3 2 < 3
3 1re 1 ∈ ℝ
4 2re 2 ∈ ℝ
5 3re 3 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 2 ∧ 2 < 3 ) → 1 < 3 )
7 1 2 6 mp2an 1 < 3