Metamath Proof Explorer


Theorem 1lt4

Description: 1 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 1lt4 1 < 4

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt4 2 < 4
3 1re 1 ∈ ℝ
4 2re 2 ∈ ℝ
5 4re 4 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 2 ∧ 2 < 4 ) → 1 < 4 )
7 1 2 6 mp2an 1 < 4