Metamath Proof Explorer


Theorem 1lt5

Description: 1 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 1lt5 1 < 5

Proof

Step Hyp Ref Expression
1 1lt4 1 < 4
2 4lt5 4 < 5
3 1re 1 ∈ ℝ
4 4re 4 ∈ ℝ
5 5re 5 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 4 ∧ 4 < 5 ) → 1 < 5 )
7 1 2 6 mp2an 1 < 5