Metamath Proof Explorer


Theorem 1lt6

Description: 1 is less than 6. (Contributed by NM, 19-Oct-2012)

Ref Expression
Assertion 1lt6 1 < 6

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt6 2 < 6
3 1re 1 ∈ ℝ
4 2re 2 ∈ ℝ
5 6re 6 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 2 ∧ 2 < 6 ) → 1 < 6 )
7 1 2 6 mp2an 1 < 6