Metamath Proof Explorer


Theorem 1lt8

Description: 1 is less than 8. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 1lt8 1 < 8

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt8 2 < 8
3 1re 1 ∈ ℝ
4 2re 2 ∈ ℝ
5 8re 8 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 2 ∧ 2 < 8 ) → 1 < 8 )
7 1 2 6 mp2an 1 < 8