Metamath Proof Explorer


Theorem 1lt9

Description: 1 is less than 9. (Contributed by NM, 19-Oct-2012) (Revised by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 1lt9 1 < 9

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt9 2 < 9
3 1re 1 ∈ ℝ
4 2re 2 ∈ ℝ
5 9re 9 ∈ ℝ
6 3 4 5 lttri ( ( 1 < 2 ∧ 2 < 9 ) → 1 < 9 )
7 1 2 6 mp2an 1 < 9