Metamath Proof Explorer


Theorem 1mhdrd

Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Assertion 1mhdrd ( ( 0 . 9 9 ) + ( 0 . 0 1 ) ) = 1

Proof

Step Hyp Ref Expression
1 0nn0 0 ∈ ℕ0
2 9nn0 9 ∈ ℕ0
3 1nn0 1 ∈ ℕ0
4 2 dec0h 9 = 0 9
5 4 eqcomi 0 9 = 9
6 5 deceq1i 0 9 9 = 9 9
7 1 dec0h 0 = 0 0
8 7 eqcomi 0 0 = 0
9 8 deceq1i 0 0 1 = 0 1
10 9cn 9 ∈ ℂ
11 10 addid1i ( 9 + 0 ) = 9
12 11 oveq1i ( ( 9 + 0 ) + 1 ) = ( 9 + 1 )
13 9p1e10 ( 9 + 1 ) = 1 0
14 12 13 eqtri ( ( 9 + 0 ) + 1 ) = 1 0
15 2 2 1 3 6 9 14 1 13 decaddc ( 0 9 9 + 0 0 1 ) = 1 0 0
16 1 2 2 1 1 3 3 1 1 15 dpadd3 ( ( 0 . 9 9 ) + ( 0 . 0 1 ) ) = ( 1 . 0 0 )
17 1 dp20u 0 0 = 0
18 17 oveq2i ( 1 . 0 0 ) = ( 1 . 0 )
19 3 dp0u ( 1 . 0 ) = 1
20 16 18 19 3eqtri ( ( 0 . 9 9 ) + ( 0 . 0 1 ) ) = 1