Metamath Proof Explorer


Theorem 1mhlfehlf

Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017)

Ref Expression
Assertion 1mhlfehlf ( 1 − ( 1 / 2 ) ) = ( 1 / 2 )

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 ax-1cn 1 ∈ ℂ
3 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )
4 divsubdir ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 − 1 ) / 2 ) = ( ( 2 / 2 ) − ( 1 / 2 ) ) )
5 1 2 3 4 mp3an ( ( 2 − 1 ) / 2 ) = ( ( 2 / 2 ) − ( 1 / 2 ) )
6 2m1e1 ( 2 − 1 ) = 1
7 6 oveq1i ( ( 2 − 1 ) / 2 ) = ( 1 / 2 )
8 2div2e1 ( 2 / 2 ) = 1
9 8 oveq1i ( ( 2 / 2 ) − ( 1 / 2 ) ) = ( 1 − ( 1 / 2 ) )
10 5 7 9 3eqtr3ri ( 1 − ( 1 / 2 ) ) = ( 1 / 2 )