Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
1n0
Next ⟩
nlim1
Metamath Proof Explorer
Ascii
Structured
Theorem
1n0
Description:
Ordinal one is not equal to ordinal zero.
(Contributed by
NM
, 26-Dec-2004)
Ref
Expression
Assertion
1n0
⊢
1
o
≠ ∅
Proof
Step
Hyp
Ref
Expression
1
df1o2
⊢
1
o
= { ∅ }
2
0ex
⊢
∅ ∈ V
3
2
snnz
⊢
{ ∅ } ≠ ∅
4
1
3
eqnetri
⊢
1
o
≠ ∅