Metamath Proof Explorer
		
		
		
		Description:  1 and 0 are distinct for signed reals.  (Contributed by NM, 26-Mar-1996)
     (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 1ne0sr | ⊢  ¬  1R  =  0R | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltsosr | ⊢  <R   Or  R | 
						
							| 2 |  | 1sr | ⊢ 1R  ∈  R | 
						
							| 3 |  | sonr | ⊢ ( (  <R   Or  R  ∧  1R  ∈  R )  →  ¬  1R  <R  1R ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ¬  1R  <R  1R | 
						
							| 5 |  | 0lt1sr | ⊢ 0R  <R  1R | 
						
							| 6 |  | breq1 | ⊢ ( 1R  =  0R  →  ( 1R  <R  1R  ↔  0R  <R  1R ) ) | 
						
							| 7 | 5 6 | mpbiri | ⊢ ( 1R  =  0R  →  1R  <R  1R ) | 
						
							| 8 | 4 7 | mto | ⊢ ¬  1R  =  0R |