Step |
Hyp |
Ref |
Expression |
1 |
|
1ex |
⊢ 1 ∈ V |
2 |
|
fr0g |
⊢ ( 1 ∈ V → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 ) |
3 |
1 2
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 |
4 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) |
7 |
4 5 6
|
mp2an |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
8 |
3 7
|
eqeltrri |
⊢ 1 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
9 |
|
df-nn |
⊢ ℕ = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) |
10 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
11 |
9 10
|
eqtri |
⊢ ℕ = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
12 |
8 11
|
eleqtrri |
⊢ 1 ∈ ℕ |