| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1ex |
⊢ 1 ∈ V |
| 2 |
|
fr0g |
⊢ ( 1 ∈ V → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) = 1 |
| 4 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω |
| 5 |
|
peano1 |
⊢ ∅ ∈ ω |
| 6 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 8 |
3 7
|
eqeltrri |
⊢ 1 ∈ ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 9 |
|
df-nn |
⊢ ℕ = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) |
| 10 |
|
df-ima |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 11 |
9 10
|
eqtri |
⊢ ℕ = ran ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 1 ) ↾ ω ) |
| 12 |
8 11
|
eleqtrri |
⊢ 1 ∈ ℕ |