Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
⊢ 1 ∈ ℕ |
2 |
|
eleq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ∈ ℕ ↔ 1 ∈ ℕ ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝑧 = 1 → 𝑧 ∈ ℕ ) |
4 |
|
nnnn0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) |
5 |
|
dvds1 |
⊢ ( 𝑧 ∈ ℕ0 → ( 𝑧 ∥ 1 ↔ 𝑧 = 1 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 1 ↔ 𝑧 = 1 ) ) |
7 |
6
|
bicomd |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ↔ 𝑧 ∥ 1 ) ) |
8 |
3 7
|
biadanii |
⊢ ( 𝑧 = 1 ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 1 ) ) |
9 |
|
velsn |
⊢ ( 𝑧 ∈ { 1 } ↔ 𝑧 = 1 ) |
10 |
|
breq1 |
⊢ ( 𝑛 = 𝑧 → ( 𝑛 ∥ 1 ↔ 𝑧 ∥ 1 ) ) |
11 |
10
|
elrab |
⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 1 ) ) |
12 |
8 9 11
|
3bitr4ri |
⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ↔ 𝑧 ∈ { 1 } ) |
13 |
12
|
eqriv |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } = { 1 } |
14 |
|
1ex |
⊢ 1 ∈ V |
15 |
14
|
ensn1 |
⊢ { 1 } ≈ 1o |
16 |
13 15
|
eqbrtri |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 1o |
17 |
|
1sdom2 |
⊢ 1o ≺ 2o |
18 |
|
ensdomtr |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 1o ∧ 1o ≺ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o ) |
19 |
16 17 18
|
mp2an |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o |
20 |
|
sdomnen |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o → ¬ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) |
21 |
19 20
|
ax-mp |
⊢ ¬ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o |
22 |
|
isprm |
⊢ ( 1 ∈ ℙ ↔ ( 1 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) ) |
23 |
1 22
|
mpbiran |
⊢ ( 1 ∈ ℙ ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) |
24 |
21 23
|
mtbir |
⊢ ¬ 1 ∈ ℙ |