| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
⊢ 1 ∈ ℕ |
| 2 |
|
eleq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 3 |
1 2
|
mpbiri |
⊢ ( 𝑧 = 1 → 𝑧 ∈ ℕ ) |
| 4 |
|
nnnn0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) |
| 5 |
|
dvds1 |
⊢ ( 𝑧 ∈ ℕ0 → ( 𝑧 ∥ 1 ↔ 𝑧 = 1 ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 1 ↔ 𝑧 = 1 ) ) |
| 7 |
6
|
bicomd |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ↔ 𝑧 ∥ 1 ) ) |
| 8 |
3 7
|
biadanii |
⊢ ( 𝑧 = 1 ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 1 ) ) |
| 9 |
|
velsn |
⊢ ( 𝑧 ∈ { 1 } ↔ 𝑧 = 1 ) |
| 10 |
|
breq1 |
⊢ ( 𝑛 = 𝑧 → ( 𝑛 ∥ 1 ↔ 𝑧 ∥ 1 ) ) |
| 11 |
10
|
elrab |
⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 1 ) ) |
| 12 |
8 9 11
|
3bitr4ri |
⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ↔ 𝑧 ∈ { 1 } ) |
| 13 |
12
|
eqriv |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } = { 1 } |
| 14 |
|
1ex |
⊢ 1 ∈ V |
| 15 |
14
|
ensn1 |
⊢ { 1 } ≈ 1o |
| 16 |
13 15
|
eqbrtri |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 1o |
| 17 |
|
1sdom2 |
⊢ 1o ≺ 2o |
| 18 |
|
ensdomtr |
⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 1o ∧ 1o ≺ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o ) |
| 19 |
16 17 18
|
mp2an |
⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o |
| 20 |
|
sdomnen |
⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o → ¬ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) |
| 21 |
19 20
|
ax-mp |
⊢ ¬ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o |
| 22 |
|
isprm |
⊢ ( 1 ∈ ℙ ↔ ( 1 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) ) |
| 23 |
1 22
|
mpbiran |
⊢ ( 1 ∈ ℙ ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) |
| 24 |
21 23
|
mtbir |
⊢ ¬ 1 ∈ ℙ |