Metamath Proof Explorer
Theorem 1nq
Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
1nq |
⊢ 1Q ∈ Q |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-1nq |
⊢ 1Q = 〈 1o , 1o 〉 |
2 |
|
1pi |
⊢ 1o ∈ N |
3 |
|
pinq |
⊢ ( 1o ∈ N → 〈 1o , 1o 〉 ∈ Q ) |
4 |
2 3
|
ax-mp |
⊢ 〈 1o , 1o 〉 ∈ Q |
5 |
1 4
|
eqeltri |
⊢ 1Q ∈ Q |