Metamath Proof Explorer


Theorem 1nq

Description: The positive fraction 'one'. (Contributed by NM, 29-Oct-1995) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion 1nq 1QQ

Proof

Step Hyp Ref Expression
1 df-1nq 1Q = ⟨ 1o , 1o
2 1pi 1oN
3 pinq ( 1oN → ⟨ 1o , 1o ⟩ ∈ Q )
4 2 3 ax-mp ⟨ 1o , 1o ⟩ ∈ Q
5 1 4 eqeltri 1QQ