| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nsgtrivd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
1nsgtrivd.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
1nsgtrivd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 4 |
|
1nsgtrivd.4 |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) |
| 5 |
1
|
nsgid |
⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 7 |
2
|
0nsg |
⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 9 |
|
en1eqsn |
⊢ ( ( { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) → ( NrmSGrp ‘ 𝐺 ) = { { 0 } } ) |
| 10 |
8 4 9
|
syl2anc |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } } ) |
| 11 |
6 10
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ { { 0 } } ) |
| 12 |
|
snex |
⊢ { 0 } ∈ V |
| 13 |
|
elsn2g |
⊢ ( { 0 } ∈ V → ( 𝐵 ∈ { { 0 } } ↔ 𝐵 = { 0 } ) ) |
| 14 |
12 13
|
mp1i |
⊢ ( 𝜑 → ( 𝐵 ∈ { { 0 } } ↔ 𝐵 = { 0 } ) ) |
| 15 |
11 14
|
mpbid |
⊢ ( 𝜑 → 𝐵 = { 0 } ) |