Metamath Proof Explorer


Theorem 1nuz2

Description: 1 is not in ( ZZ>=2 ) . (Contributed by Paul Chapman, 21-Nov-2012)

Ref Expression
Assertion 1nuz2 ¬ 1 ∈ ( ℤ ‘ 2 )

Proof

Step Hyp Ref Expression
1 neirr ¬ 1 ≠ 1
2 eluz2b3 ( 1 ∈ ( ℤ ‘ 2 ) ↔ ( 1 ∈ ℕ ∧ 1 ≠ 1 ) )
3 2 simprbi ( 1 ∈ ( ℤ ‘ 2 ) → 1 ≠ 1 )
4 1 3 mto ¬ 1 ∈ ( ℤ ‘ 2 )